IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v119y2018icp1-18.html
   My bibliography  Save this article

Dependent mixtures of geometric weights priors

Author

Listed:
  • Hatjispyros, Spyridon J.
  • Merkatas, Christos
  • Nicoleris, Theodoros
  • Walker, Stephen G.

Abstract

A new approach to the joint estimation of partially exchangeable observations is presented. This is achieved by constructing a model with pairwise dependence between random density functions, each of which is modeled as a mixture of geometric stick breaking processes. The main contention is that mixture modeling with Pairwise Dependent Geometric Stick Breaking Process (PDGSBP) priors is sufficient for prediction and estimation purposes; that is, making the weights more exotic does not actually enlarge the support of the prior. Moreover, the corresponding Gibbs sampler for estimation is faster and easier to implement than the Dirichlet Process counterpart.

Suggested Citation

  • Hatjispyros, Spyridon J. & Merkatas, Christos & Nicoleris, Theodoros & Walker, Stephen G., 2018. "Dependent mixtures of geometric weights priors," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 1-18.
  • Handle: RePEc:eee:csdana:v:119:y:2018:i:c:p:1-18
    DOI: 10.1016/j.csda.2017.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317302001
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Iorio, Maria & Muller, Peter & Rosner, Gary L. & MacEachern, Steven N., 2004. "An ANOVA Model for Dependent Random Measures," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 205-215, January.
    2. Lijoi, Antonio & Nipoti, Bernardo & Prünster, Igor, 2014. "Dependent mixture models: Clustering and borrowing information," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 417-433.
    3. J. E. Griffin & M. Kolossiatis & M. F. J. Steel, 2013. "Comparing distributions by using dependent normalized random-measure mixtures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 499-529, June.
    4. Griffin, J.E. & Steel, M.F.J., 2006. "Order-Based Dependent Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 179-194, March.
    5. Hatjispyros, Spyridon J. & Nicoleris, Theodoros & Walker, Stephen G., 2011. "Dependent mixtures of Dirichlet processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2011-2025, June.
    6. Peter Müller & Fernando Quintana & Gary Rosner, 2004. "A method for combining inference across related nonparametric Bayesian models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 735-749, August.
    7. Fuentes-García, Ruth & Mena, Ramsés H. & Walker, Stephen G., 2009. "A nonparametric dependent process for Bayesian regression," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1112-1119, April.
    8. David B. Dunson & Ju-Hyun Park, 2008. "Kernel stick-breaking processes," Biometrika, Biometrika Trust, vol. 95(2), pages 307-323.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Blasi, Pierpaolo & Martínez, Asael Fabian & Mena, Ramsés H. & Prünster, Igor, 2020. "On the inferential implications of decreasing weight structures in mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
    2. Pierpaolo De Blasi & Ramsés H. Mena & Igor Prünster, 2022. "Asymptotic behavior of the number of distinct values in a sample from the geometric stick-breaking process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 143-165, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hatjispyros, Spyridon J. & Nicoleris, Theodoros & Walker, Stephen G., 2016. "Random density functions with common atoms and pairwise dependence," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 236-249.
    2. Weixuan Zhu & Fabrizio Leisen, 2015. "A multivariate extension of a vector of two-parameter Poisson-Dirichlet processes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 89-105, March.
    3. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2014. "Beta-product dependent Pitman–Yor processes for Bayesian inference," Journal of Econometrics, Elsevier, vol. 180(1), pages 49-72.
    4. repec:jss:jstsof:40:i05 is not listed on IDEAS
    5. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2011. "Beta-product Poisson-Dirichlet Processes," DES - Working Papers. Statistics and Econometrics. WS 12160, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    7. Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
    8. Fuentes-García, Ruth & Mena, Ramsés H. & Walker, Stephen G., 2009. "A nonparametric dependent process for Bayesian regression," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1112-1119, April.
    9. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    10. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
    11. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
    12. Huang, Yifan & Meng, Shengwang, 2020. "A Bayesian nonparametric model and its application in insurance loss prediction," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 84-94.
    13. Yeonseung Chung & David Dunson, 2011. "The local Dirichlet process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 59-80, February.
    14. Norets, Andriy, 2015. "Bayesian regression with nonparametric heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 409-419.
    15. Hatjispyros, Spyridon J. & Nicoleris, Theodoros & Walker, Stephen G., 2011. "Dependent mixtures of Dirichlet processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2011-2025, June.
    16. Igor Prünster & Matteo Ruggiero, 2011. "A Bayesian nonparametric approach to modeling market share dynamics," Carlo Alberto Notebooks 217, Collegio Carlo Alberto.
    17. Gutiérrez, Luis & Mena, Ramsés H. & Ruggiero, Matteo, 2016. "A time dependent Bayesian nonparametric model for air quality analysis," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 161-175.
    18. Antonio Lijoi & Bernardo Nipoti, 2013. "A class of hazard rate mixtures for combining survival data from different experiments," DEM Working Papers Series 059, University of Pavia, Department of Economics and Management.
    19. González, Jorge & Barrientos, Andrés F. & Quintana, Fernando A., 2015. "Bayesian nonparametric estimation of test equating functions with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 222-244.
    20. Norets, Andriy & Pelenis, Justinas, 2012. "Bayesian modeling of joint and conditional distributions," Journal of Econometrics, Elsevier, vol. 168(2), pages 332-346.
    21. Leisen, Fabrizio, 2013. "A multivariate extension of a vector of Poisson- Dirichlet processes," DES - Working Papers. Statistics and Econometrics. WS ws132220, Universidad Carlos III de Madrid. Departamento de Estadística.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:119:y:2018:i:c:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.