IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v11y2023i4p24-d1258711.html
   My bibliography  Save this article

Dirichlet Process Log Skew-Normal Mixture with a Missing-at-Random-Covariate in Insurance Claim Analysis

Author

Listed:
  • Minkun Kim

    (ADAPT Centre, School of Computing, Dublin City University, D09 PX21 Dublin, Ireland)

  • David Lindberg

    (Department of Statistics, University of Florida, Gainesville, FL 32611, USA)

  • Martin Crane

    (ADAPT Centre, School of Computing, Dublin City University, D09 PX21 Dublin, Ireland)

  • Marija Bezbradica

    (ADAPT Centre, School of Computing, Dublin City University, D09 PX21 Dublin, Ireland)

Abstract

In actuarial practice, the modeling of total losses tied to a certain policy is a nontrivial task due to complex distributional features. In the recent literature, the application of the Dirichlet process mixture for insurance loss has been proposed to eliminate the risk of model misspecification biases. However, the effect of covariates as well as missing covariates in the modeling framework is rarely studied. In this article, we propose novel connections among a covariate-dependent Dirichlet process mixture, log-normal convolution, and missing covariate imputation. As a generative approach, our framework models the joint of outcome and covariates, which allows us to impute missing covariates under the assumption of missingness at random. The performance is assessed by applying our model to several insurance datasets of varying size and data missingness from the literature, and the empirical results demonstrate the benefit of our model compared with the existing actuarial models, such as the Tweedie-based generalized linear model, generalized additive model, or multivariate adaptive regression spline.

Suggested Citation

  • Minkun Kim & David Lindberg & Martin Crane & Marija Bezbradica, 2023. "Dirichlet Process Log Skew-Normal Mixture with a Missing-at-Random-Covariate in Insurance Claim Analysis," Econometrics, MDPI, vol. 11(4), pages 1-32, October.
  • Handle: RePEc:gam:jecnmx:v:11:y:2023:i:4:p:24-:d:1258711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/11/4/24/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/11/4/24/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    2. Huang, Yifan & Meng, Shengwang, 2020. "A Bayesian nonparametric model and its application in insurance loss prediction," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 84-94.
    3. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
    4. Griffin, J.E. & Steel, M.F.J., 2006. "Order-Based Dependent Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 179-194, March.
    5. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Khalaf-Allah, Marwa, 2011. "Bayesian Stochastic Mortality Modelling for Two Populations," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 29-59, May.
    6. Michael Braun & Peter S. Fader & Eric T. Bradlow & Howard Kunreuther, 2006. "Modeling the "Pseudodeductible" in Insurance Claims Decisions," Management Science, INFORMS, vol. 52(8), pages 1258-1272, August.
    7. Liang Hong & Ryan Martin, 2017. "A Flexible Bayesian Nonparametric Model for Predicting Future Insurance Claims," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(2), pages 228-241, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    2. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    3. Weixuan Zhu & Fabrizio Leisen, 2015. "A multivariate extension of a vector of two-parameter Poisson-Dirichlet processes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 89-105, March.
    4. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    5. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
    6. Shamsi Zamenjani, Azam, 2021. "Do financial variables help predict the conditional distribution of the market portfolio?," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 327-345.
    7. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2014. "Beta-product dependent Pitman–Yor processes for Bayesian inference," Journal of Econometrics, Elsevier, vol. 180(1), pages 49-72.
    8. Isadora Antoniano-Villalobos & Stephen G. Walker, 2016. "A Nonparametric Model for Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 126-142, January.
    9. Huang, Yifan & Meng, Shengwang, 2020. "A Bayesian nonparametric model and its application in insurance loss prediction," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 84-94.
    10. Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".
    11. Igor Prünster & Matteo Ruggiero, 2011. "A Bayesian nonparametric approach to modeling market share dynamics," Carlo Alberto Notebooks 217, Collegio Carlo Alberto.
    12. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2011. "Beta-product Poisson-Dirichlet Processes," DES - Working Papers. Statistics and Econometrics. WS 12160, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Luis E. Nieto-Barajas & Peter Müller & Yuan Ji & Yiling Lu & Gordon B. Mills, 2012. "A Time-Series DDP for Functional Proteomics Profiles," Biometrics, The International Biometric Society, vol. 68(3), pages 859-868, September.
    14. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    15. Olivier Le Courtois, 2020. "q-Credibility," Post-Print hal-02525182, HAL.
    16. Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
    17. Ungolo, Francesco & Kleinow, Torsten & Macdonald, Angus S., 2020. "A hierarchical model for the joint mortality analysis of pension scheme data with missing covariates," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 68-84.
    18. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.
    19. Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
    20. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:11:y:2023:i:4:p:24-:d:1258711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.