IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v66y2014i1p1-31.html
   My bibliography  Save this article

Bayesian nonparametric regression with varying residual density

Author

Listed:
  • Debdeep Pati
  • David Dunson

Abstract

We consider the problem of robust Bayesian inference on the mean regression function allowing the residual density to change flexibly with predictors. The proposed class of models is based on a Gaussian process (GP) prior for the mean regression function and mixtures of Gaussians for the collection of residual densities indexed by predictors. Initially considering the homoscedastic case, we propose priors for the residual density based on probit stick-breaking mixtures. We provide sufficient conditions to ensure strong posterior consistency in estimating the regression function, generalizing existing theory focused on parametric residual distributions. The homoscedastic priors are generalized to allow residual densities to change nonparametrically with predictors through incorporating GP in the stick-breaking components. This leads to a robust Bayesian regression procedure that automatically down-weights outliers and influential observations in a locally adaptive manner. The methods are illustrated using simulated and real data applications. Copyright The Institute of Statistical Mathematics, Tokyo 2014

Suggested Citation

  • Debdeep Pati & David Dunson, 2014. "Bayesian nonparametric regression with varying residual density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 1-31, February.
  • Handle: RePEc:spr:aistmt:v:66:y:2014:i:1:p:1-31
    DOI: 10.1007/s10463-013-0415-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-013-0415-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-013-0415-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models," Biometrika, Biometrika Trust, vol. 95(1), pages 169-186.
    2. Choi, Taeryon & Schervish, Mark J., 2007. "On posterior consistency in nonparametric regression problems," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1969-1987, November.
    3. Kottas A. & Gelfand A.E., 2001. "Bayesian Semiparametric Median Regression Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1458-1468, December.
    4. Chung, Yeonseung & Dunson, David B., 2009. "Nonparametric Bayes Conditional Distribution Modeling With Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1646-1660.
    5. Ongaro, Andrea & Cattaneo, Carla, 2004. "Discrete random probability measures: a general framework for nonparametric Bayesian inference," Statistics & Probability Letters, Elsevier, vol. 67(1), pages 33-45, March.
    6. Chib, Siddhartha & Greenberg, Edward, 2010. "Additive cubic spline regression with Dirichlet process mixture errors," Journal of Econometrics, Elsevier, vol. 156(2), pages 322-336, June.
    7. Deborah Burr & Hani Doss, 2005. "A Bayesian Semiparametric Model for Random-Effects Meta-Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 242-251, March.
    8. James H. Albert & Siddhartha Chib, 2001. "Sequential Ordinal Modeling with Applications to Survival Data," Biometrics, The International Biometric Society, vol. 57(3), pages 829-836, September.
    9. David Nott, 2006. "Semiparametric estimation of mean and variance functions for non-Gaussian data," Computational Statistics, Springer, vol. 21(3), pages 603-620, December.
    10. Gramacy, Robert B & Lee, Herbert K. H, 2008. "Bayesian Treed Gaussian Process Models With an Application to Computer Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1119-1130.
    11. Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
    12. Griffin, J.E. & Steel, M.F.J., 2006. "Order-Based Dependent Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 179-194, March.
    13. Pelenis, Justinas, 2012. "Bayesian Semiparametric Regression," Economics Series 285, Institute for Advanced Studies.
    14. David B. Dunson & Natesh Pillai & Ju‐Hyun Park, 2007. "Bayesian density regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 163-183, April.
    15. Norets, Andriy & Pelenis, Justinas, 2014. "Posterior Consistency In Conditional Density Estimation By Covariate Dependent Mixtures," Econometric Theory, Cambridge University Press, vol. 30(3), pages 606-646, June.
    16. Thaís C. O. Fonseca & Marco A. R. Ferreira & Helio S. Migon, 2008. "Objective Bayesian analysis for the Student-t regression model," Biometrika, Biometrika Trust, vol. 95(2), pages 325-333.
    17. Taeryon Choi, 2009. "Asymptotic properties of posterior distributions in nonparametric regression with non-Gaussian errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(4), pages 835-859, December.
    18. David B. Dunson & Ju-Hyun Park, 2008. "Kernel stick-breaking processes," Biometrika, Biometrika Trust, vol. 95(2), pages 307-323.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Peng & Kim, Inyoung & Lee, Ki-Ahm, 2018. "Dual-semiparametric regression using weighted Dirichlet process mixture," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 162-181.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pelenis, Justinas, 2014. "Bayesian regression with heteroscedastic error density and parametric mean function," Journal of Econometrics, Elsevier, vol. 178(P3), pages 624-638.
    2. Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
    3. Huang, Yifan & Meng, Shengwang, 2020. "A Bayesian nonparametric model and its application in insurance loss prediction," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 84-94.
    4. Norets, Andriy, 2015. "Bayesian regression with nonparametric heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 409-419.
    5. Pelenis, Justinas, 2012. "Bayesian Semiparametric Regression," Economics Series 285, Institute for Advanced Studies.
    6. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
    7. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
    8. Barrientos, Andrés F. & Canale, Antonio, 2021. "A Bayesian goodness-of-fit test for regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    9. Miller, Jeffrey W., 2019. "An elementary derivation of the Chinese restaurant process from Sethuraman’s stick-breaking process," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 112-117.
    10. Norets, Andriy & Pelenis, Justinas, 2012. "Bayesian modeling of joint and conditional distributions," Journal of Econometrics, Elsevier, vol. 168(2), pages 332-346.
    11. Igari, Ryosuke & Hoshino, Takahiro, 2018. "A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
    12. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    13. Fuentes-García, Ruth & Mena, Ramsés H. & Walker, Stephen G., 2009. "A nonparametric dependent process for Bayesian regression," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1112-1119, April.
    14. Laura Liu, 2018. "Density Forecasts in Panel Data Models : A Semiparametric Bayesian Perspective," Finance and Economics Discussion Series 2018-036, Board of Governors of the Federal Reserve System (U.S.).
    15. Villani, Mattias & Kohn, Robert & Nott, David J., 2012. "Generalized smooth finite mixtures," Journal of Econometrics, Elsevier, vol. 171(2), pages 121-133.
    16. Yeonseung Chung & David Dunson, 2011. "The local Dirichlet process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 59-80, February.
    17. Ryo Kato & Takahiro Hoshino, 2018. "Semiparametric Bayes Multiple Imputation for Regression Models with Missing Mixed Continuous-Discrete Covariates," Discussion Paper Series DP2018-15, Research Institute for Economics & Business Administration, Kobe University.
    18. Andrés F. Barrientos & Alejandro Jara & Fernando A. Quintana, 2017. "Fully Nonparametric Regression for Bounded Data Using Dependent Bernstein Polynomials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 806-825, April.
    19. Hatjispyros, Spyridon J. & Nicoleris, Theodoros & Walker, Stephen G., 2011. "Dependent mixtures of Dirichlet processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2011-2025, June.
    20. Gutiérrez, Luis & Mena, Ramsés H. & Ruggiero, Matteo, 2016. "A time dependent Bayesian nonparametric model for air quality analysis," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 161-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:66:y:2014:i:1:p:1-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.