IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v88y2023icp902-927.html
   My bibliography  Save this article

Deliberate premarket underpricing: New evidence on IPO pricing using machine learning

Author

Listed:
  • Pirayesh Neghab, Davood
  • Bradrania, Reza
  • Elliott, Robert

Abstract

We propose a nonlinear approach based on stochastic frontier and Deep Neural Networks (DNN) to estimate the pricing efficiency and the level of premarket inefficiencies for IPOs, using information available before the IPO day and without any distributional assumptions. We apply the proposed approach in the US IPO market to estimate deliberate (premarket) underpricing and find that the IPO offer prices are about 12.43% less than the estimated maximum offer prices on average. We further show that only a few determinants of the value of firms impact the pricing and deliberate underpricing of IPOs. Negative net income and EBITDA play the most important roles in determining the IPO maximum offer price, among various pricing variables. Proceeds followed by underwriter reputation negatively impact the premarket underpricing, and the IPO market activity, measured by the number of new issues, is the most important market cycle proxy that influences the premarket underpricing. We show that aftermarket mispricing is attributed more to offer size and underwriter reputation. The proposed DNN-based method is an easy to implement approach and can be used by academics and practitioners to estimate maximum offer prices and disentangle initial returns into deliberate premarket underpricing and aftermarket mispricing.

Suggested Citation

  • Pirayesh Neghab, Davood & Bradrania, Reza & Elliott, Robert, 2023. "Deliberate premarket underpricing: New evidence on IPO pricing using machine learning," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 902-927.
  • Handle: RePEc:eee:reveco:v:88:y:2023:i:c:p:902-927
    DOI: 10.1016/j.iref.2023.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056023002186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2023.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunt-McCool, Janet & Koh, Samuel C & Francis, Bill B, 1996. "Testing for Deliberate Underpricing in the IPO Premarket: A Stochastic Frontier Approach," The Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1251-1269.
    2. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    3. J. Griffin & M. Steel, 2008. "Flexible mixture modelling of stochastic frontiers," Journal of Productivity Analysis, Springer, vol. 29(1), pages 33-50, February.
    4. Hailin Liao & Bin Wang & Tom Weyman-Jones, 2007. "Neural Network Based Models for Efficiency Frontier Analysis: An Application to East Asian Economies' Growth Decomposition," Global Economic Review, Taylor & Francis Journals, vol. 36(4), pages 361-384.
    5. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    6. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
    7. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    8. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Abrahamson, 2024. "Offer Price and Post-IPO Ownership Structure," JRFM, MDPI, vol. 17(2), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamil Makieła & Błażej Mazur, 2022. "Model uncertainty and efficiency measurement in stochastic frontier analysis with generalized errors," Journal of Productivity Analysis, Springer, vol. 58(1), pages 35-54, August.
    2. Kamil Makieła & Błażej Mazur, 2020. "Bayesian Model Averaging and Prior Sensitivity in Stochastic Frontier Analysis," Econometrics, MDPI, vol. 8(2), pages 1-22, April.
    3. Jim Griffin & Mark Steel, 2007. "Bayesian stochastic frontier analysis using WinBUGS," Journal of Productivity Analysis, Springer, vol. 27(3), pages 163-176, June.
    4. Gholamreza Hajargasht & William E. Griffiths, 2018. "Estimation and testing of stochastic frontier models using variational Bayes," Journal of Productivity Analysis, Springer, vol. 50(1), pages 1-24, October.
    5. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2014. "Estimation and efficiency measurement in stochastic production frontiers with ordinal outcomes," Journal of Productivity Analysis, Springer, vol. 42(1), pages 67-84, August.
    6. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2010. "A Stochastic Frontier Model for Discrete Ordinal Outcomes: A Health Production Function," Monash Econometrics and Business Statistics Working Papers 3/10, Monash University, Department of Econometrics and Business Statistics.
    7. Jorge Galán & Helena Veiga & Michael Wiper, 2014. "Bayesian estimation of inefficiency heterogeneity in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 85-101, August.
    8. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    9. Kamil Makie{l}a & B{l}a.zej Mazur, 2020. "Stochastic Frontier Analysis with Generalized Errors: inference, model comparison and averaging," Papers 2003.07150, arXiv.org, revised Oct 2020.
    10. repec:cte:wsrepe:ws121007 is not listed on IDEAS
    11. Deng, Yaguo, 2024. "A Bayesian semi-parametric approach to stochastic frontier models with inefficiency heterogeneity," DES - Working Papers. Statistics and Econometrics. WS 43837, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Guohua Feng & Chuan Wang & Xibin Zhang, 2019. "Estimation of inefficiency in stochastic frontier models: a Bayesian kernel approach," Journal of Productivity Analysis, Springer, vol. 51(1), pages 1-19, February.
    13. Gholamreza Hajargasht, 2015. "Stochastic frontiers with a Rayleigh distribution," Journal of Productivity Analysis, Springer, vol. 44(2), pages 199-208, October.
    14. Emvalomatis, Grigorios & Oude Lansink, Alfons G.J.M. & Stefanou, Spiro E., 2008. "An Examination of the Relationship Between Subsidies on Production and Technical Efficiency in Agriculture: The Case of Cotton Producers in Greece," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6673, European Association of Agricultural Economists.
    15. Carta, Alessandro & Steel, Mark F.J., 2012. "Modelling multi-output stochastic frontiers using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3757-3773.
    16. Cuéllar Martín, Jaime & Martín-Román, Ángel L. & Moral, Alfonso, 2017. "A composed error model decomposition and spatial analysis of local unemployment," MPRA Paper 79783, University Library of Munich, Germany.
    17. Léopold Simar & Valentin Zelenyuk, 2011. "Stochastic FDH/DEA estimators for frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(1), pages 1-20, August.
    18. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    19. Alali, Walid Y., 2009. "Economic Performance and Institutions: Measuring Technical Efficiency Using SPF Approach," MPRA Paper 114336, University Library of Munich, Germany, revised Aug 2009.
    20. Ablam Estel APETI & Bao-We-Wal BAMBE & Jean Louis COMBES, 2022. "On the Macroeconomic Effects of Fiscal Reforms : Fiscal Rules and Public Expenditure Efficiency," LEO Working Papers / DR LEO 2985, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    21. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CERDI Working papers halshs-02080285, HAL.

    More about this item

    Keywords

    IPO; Underpricing; Deliberate underpricing; Machine learning; DNN; Offer price;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G24 - Financial Economics - - Financial Institutions and Services - - - Investment Banking; Venture Capital; Brokerage
    • G30 - Financial Economics - - Corporate Finance and Governance - - - General
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:88:y:2023:i:c:p:902-927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.