Bayesian regression with heteroscedastic error density and parametric mean function
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jeconom.2013.10.006
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models," Biometrika, Biometrika Trust, vol. 95(1), pages 169-186.
- De Iorio, Maria & Muller, Peter & Rosner, Gary L. & MacEachern, Steven N., 2004. "An ANOVA Model for Dependent Random Measures," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 205-215, January.
- Robinson, P M, 1987. "Asymptotically Efficient Estimation in the Presence of Heteroskedasticity of Unknown Form," Econometrica, Econometric Society, vol. 55(4), pages 875-891, July.
- Keisuke Hirano, 2002. "Semiparametric Bayesian Inference in Autoregressive Panel Data Models," Econometrica, Econometric Society, vol. 70(2), pages 781-799, March.
- Shen X., 2002. "Asymptotic Normality of Semiparametric and Nonparametric Posterior Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 222-235, March.
- Yeonseung Chung & David Dunson, 2011. "The local Dirichlet process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 59-80, February.
- John Geweke & Gianni Amisano, 2011.
"Hierarchical Markov normal mixture models with applications to financial asset returns,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 1-29, January/F.
- John Geweke & Gianni Amisano, 2007. "Hierarchical Markov Normal Mixture Models with Applications to Financial Asset Returns," Working Papers 0705, University of Brescia, Department of Economics.
- Amisano, Gianni & Geweke, John, 2007. "Hierarchical Markov normal mixture models with applications to financial asset returns," Working Paper Series 831, European Central Bank.
- Geweke, John & Keane, Michael, 2007. "Smoothly mixing regressions," Journal of Econometrics, Elsevier, vol. 138(1), pages 252-290, May.
- Conley, Timothy G. & Hansen, Christian B. & McCulloch, Robert E. & Rossi, Peter E., 2008. "A semi-parametric Bayesian approach to the instrumental variable problem," Journal of Econometrics, Elsevier, vol. 144(1), pages 276-305, May.
- White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
- Kottas A. & Gelfand A.E., 2001. "Bayesian Semiparametric Median Regression Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1458-1468, December.
- Chung, Yeonseung & Dunson, David B., 2009. "Nonparametric Bayes Conditional Distribution Modeling With Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1646-1660.
- Chib, Siddhartha & Greenberg, Edward, 2010. "Additive cubic spline regression with Dirichlet process mixture errors," Journal of Econometrics, Elsevier, vol. 156(2), pages 322-336, June.
- Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
- Griffin, J.E. & Steel, M.F.J., 2006. "Order-Based Dependent Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 179-194, March.
- Ulrich K. Müller, 2013. "Risk of Bayesian Inference in Misspecified Models, and the Sandwich Covariance Matrix," Econometrica, Econometric Society, vol. 81(5), pages 1805-1849, September.
- David B. Dunson & Ju-Hyun Park, 2008. "Kernel stick-breaking processes," Biometrika, Biometrika Trust, vol. 95(2), pages 307-323.
- Norets, Andriy & Pelenis, Justinas, 2012. "Bayesian modeling of joint and conditional distributions," Journal of Econometrics, Elsevier, vol. 168(2), pages 332-346.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Laura Liu, 2018.
"Density Forecasts in Panel Data Models : A Semiparametric Bayesian Perspective,"
Finance and Economics Discussion Series
2018-036, Board of Governors of the Federal Reserve System (U.S.).
- Laura Liu, 2020. "Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective," CAEPR Working Papers 2020-003, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- Laura Liu, 2018. "Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective," Papers 1805.04178, arXiv.org, revised Oct 2021.
- repec:cte:wsrepe:ws1504 is not listed on IDEAS
- Federico Bassetti & Roberto Casarin & Marco Del Negro, 2022. "A Bayesian Approach to Inference on Probabilistic Surveys," Staff Reports 1025, Federal Reserve Bank of New York.
- Hien Duy Nguyen & TrungTin Nguyen & Faicel Chamroukhi & Geoffrey John McLachlan, 2021. "Approximations of conditional probability density functions in Lebesgue spaces via mixture of experts models," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-15, December.
- Norets, Andriy, 2015. "Bayesian regression with nonparametric heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 409-419.
- Abhra Sarkar & Bani K. Mallick & Raymond J. Carroll, 2014. "Bayesian semiparametric regression in the presence of conditionally heteroscedastic measurement and regression errors," Biometrics, The International Biometric Society, vol. 70(4), pages 823-834, December.
- Laura Liu, 2017. "Density Forecasts in Panel Models: A semiparametric Bayesian Perspective," PIER Working Paper Archive 17-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 28 Apr 2017.
- repec:cte:whrepe:ws1504 is not listed on IDEAS
- Mukhoti, Sujay & Guhathakurta, Kousik, 2015. "Product market performance and capital structure: A Hierarchical Bayesian semi-parametric panel regression model," MPRA Paper 62517, University Library of Munich, Germany.
- Lewis, Gabriel, 2022. "Heteroskedasticity and Clustered Covariances from a Bayesian Perspective," MPRA Paper 116662, University Library of Munich, Germany.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pelenis, Justinas, 2012. "Bayesian Semiparametric Regression," Economics Series 285, Institute for Advanced Studies.
- Norets, Andriy, 2015. "Bayesian regression with nonparametric heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 409-419.
- Debdeep Pati & David Dunson, 2014. "Bayesian nonparametric regression with varying residual density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 1-31, February.
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018.
"Bayesian Nonparametric Calibration and Combination of Predictive Distributions,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2015. "Bayesian nonparametric calibration and combination of predictive distributions," Working Paper 2015/03, Norges Bank.
- Roberto Casarin & Federico Bassetti & Francesco Ravazzolo, 2015. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Working Papers 2015:04, Department of Economics, University of Venice "Ca' Foscari".
- Huang, Yifan & Meng, Shengwang, 2020. "A Bayesian nonparametric model and its application in insurance loss prediction," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 84-94.
- Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
- Laura Liu, 2018.
"Density Forecasts in Panel Data Models : A Semiparametric Bayesian Perspective,"
Finance and Economics Discussion Series
2018-036, Board of Governors of the Federal Reserve System (U.S.).
- Laura Liu, 2020. "Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective," CAEPR Working Papers 2020-003, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- Laura Liu, 2018. "Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective," Papers 1805.04178, arXiv.org, revised Oct 2021.
- Norets, Andriy & Pelenis, Justinas, 2012. "Bayesian modeling of joint and conditional distributions," Journal of Econometrics, Elsevier, vol. 168(2), pages 332-346.
- Jensen, Mark J. & Maheu, John M., 2010.
"Bayesian semiparametric stochastic volatility modeling,"
Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
- Mark J Jensen & John M Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," Working Papers tecipa-314, University of Toronto, Department of Economics.
- Mark J. Jensen & John M. Maheu, 2009. "Bayesian Semiparametric Stochastic Volatility Modeling," Working Paper series 23_09, Rimini Centre for Economic Analysis.
- Mark J. Jensen & John M. Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," FRB Atlanta Working Paper 2008-15, Federal Reserve Bank of Atlanta.
- Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
- Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
- Barrientos, Andrés F. & Canale, Antonio, 2021. "A Bayesian goodness-of-fit test for regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
- Ryo Kato & Takahiro Hoshino, 2018. "Semiparametric Bayes Instrumental Variable Estimation with Many Weak Instruments," Discussion Paper Series DP2018-14, Research Institute for Economics & Business Administration, Kobe University.
- Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2014.
"Beta-product dependent Pitman–Yor processes for Bayesian inference,"
Journal of Econometrics, Elsevier, vol. 180(1), pages 49-72.
- Federico Bassetti & Roberto Casarin & Fabrizio Leisen, 2013. "Beta-Product Dependent Pitman-Yor Processes for Bayesian Inference," Working Papers 2013:13, Department of Economics, University of Venice "Ca' Foscari".
- Jin, Xin & Maheu, John M., 2016.
"Bayesian semiparametric modeling of realized covariance matrices,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
- Jin, Xin & Maheu, John M, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," MPRA Paper 60102, University Library of Munich, Germany.
- Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
- Andrés F. Barrientos & Alejandro Jara & Fernando A. Quintana, 2017. "Fully Nonparametric Regression for Bounded Data Using Dependent Bernstein Polynomials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 806-825, April.
- Miller, Jeffrey W., 2019. "An elementary derivation of the Chinese restaurant process from Sethuraman’s stick-breaking process," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 112-117.
- Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
- Fuentes-García, Ruth & Mena, Ramsés H. & Walker, Stephen G., 2009. "A nonparametric dependent process for Bayesian regression," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1112-1119, April.
- Laura Liu, 2017. "Density Forecasts in Panel Models: A semiparametric Bayesian Perspective," PIER Working Paper Archive 17-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 28 Apr 2017.
More about this item
Keywords
Bayesian semi-parametrics; Bayesian conditional density estimation; Heteroscedastic linear regression;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:178:y:2014:i:p3:p:624-638. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.