IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v10y2008i3d10.1007_s11009-007-9056-0.html
   My bibliography  Save this article

Exact Simulation of IG-OU Processes

Author

Listed:
  • Shibin Zhang

    (Shanghai Maritime University)

  • Xinsheng Zhang

    (Fudan University)

Abstract

IG-OU processes are a subclass of the non-Gaussian processes of Ornstein–Uhlenbeck type, which are important models appearing in financial mathematics and elsewhere. The simulation of these processes is of interest for its applications in statistical inference. In this paper, a stochastic integral of Ornstein–Uhlenbeck type is represented to be the sum of two independent random variables—one has an inverse Gaussian distribution and the other has a compound Poisson distribution. And in distribution, the compound Poisson random variable is equal to a sum of Poisson-distributed number positive random variables, which are independent identically distributed and have a common specified density function. The exact simulation of the IG-OU processes, proceeding from time 0 and going in steps of time interval Δ, is achieved via the representation of the stochastic integral. Comparing to the approximate method, which is based on Rosinski’s infinite series representation of the same stochastic integral, by the quantile–quantile plots, the advantage of the exact simulation method is obvious. In addition, as an application, we provide an estimator of the intensity parameter of the IG-OU processes and validate its superiority to another estimator by our exact simulation method.

Suggested Citation

  • Shibin Zhang & Xinsheng Zhang, 2008. "Exact Simulation of IG-OU Processes," Methodology and Computing in Applied Probability, Springer, vol. 10(3), pages 337-355, September.
  • Handle: RePEc:spr:metcap:v:10:y:2008:i:3:d:10.1007_s11009-007-9056-0
    DOI: 10.1007/s11009-007-9056-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-007-9056-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-007-9056-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gareth O. Roberts & Omiros Papaspiliopoulos & Petros Dellaportas, 2004. "Bayesian inference for non‐Gaussian Ornstein–Uhlenbeck stochastic volatility processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 369-393, May.
    2. Griffin, J.E. & Steel, M.F.J., 2006. "Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility," Journal of Econometrics, Elsevier, vol. 134(2), pages 605-644, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piergiacomo Sabino & Nicola Cufaro Petroni, 2022. "Fast simulation of tempered stable Ornstein–Uhlenbeck processes," Computational Statistics, Springer, vol. 37(5), pages 2517-2551, November.
    2. Michael Grabchak, 2021. "On the transition laws of p-tempered $$\alpha $$ α -stable OU-processes," Computational Statistics, Springer, vol. 36(2), pages 1415-1436, June.
    3. Asger Lunde & Anne Floor Brix & Wei Wei, 2015. "A Generalized Schwartz Model for Energy Spot Prices - Estimation using a Particle MCMC Method," CREATES Research Papers 2015-46, Department of Economics and Business Economics, Aarhus University.
    4. Kevin W. Lu, 2022. "Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 365-396, July.
    5. Reiichiro Kawai, 2017. "Sample Path Generation of Lévy-Driven Continuous-Time Autoregressive Moving Average Processes," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 175-211, March.
    6. Kawai Reiichiro & Masuda Hiroki, 2011. "Exact discrete sampling of finite variation tempered stable Ornstein–Uhlenbeck processes," Monte Carlo Methods and Applications, De Gruyter, vol. 17(3), pages 279-300, January.
    7. Matteo Gardini & Piergiacomo Sabino & Emanuela Sasso, 2020. "A bivariate Normal Inverse Gaussian process with stochastic delay: efficient simulations and applications to energy markets," Papers 2011.04256, arXiv.org.
    8. Akira Yamazaki, 2016. "Generalized Barndorff-Nielsen And Shephard Model And Discretely Monitored Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-34, June.
    9. Michele Bianchi & Frank Fabozzi, 2015. "Investigating the Performance of Non-Gaussian Stochastic Intensity Models in the Calibration of Credit Default Swap Spreads," Computational Economics, Springer;Society for Computational Economics, vol. 46(2), pages 243-273, August.
    10. Shibin Zhang, 2011. "Transition Law-based Simulation of Generalized Inverse Gaussian Ornstein–Uhlenbeck Processes," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 619-656, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    2. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    3. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    4. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. Roberto León-González, 2019. "Efficient Bayesian inference in generalized inverse gamma processes for stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 899-920, September.
    6. Creal, Drew D., 2008. "Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2863-2876, February.
    7. Griffin, J.E. & Steel, M.F.J., 2010. "Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2594-2608, November.
    8. Fasen, Vicky, 2013. "Statistical estimation of multivariate Ornstein–Uhlenbeck processes and applications to co-integration," Journal of Econometrics, Elsevier, vol. 172(2), pages 325-337.
    9. Taufer, Emanuele & Leonenko, Nikolai & Bee, Marco, 2011. "Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2525-2539, August.
    10. Friedrich Hubalek & Petra Posedel, 2008. "Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models," Papers 0807.3479, arXiv.org.
    11. Sylvia Frühwirth-Schnatter & Leopold Sögner, 2009. "Bayesian estimation of stochastic volatility models based on OU processes with marginal Gamma law," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 159-179, March.
    12. Todorov, Viktor, 2011. "Econometric analysis of jump-driven stochastic volatility models," Journal of Econometrics, Elsevier, vol. 160(1), pages 12-21, January.
    13. N. Chopin & P. E. Jacob & O. Papaspiliopoulos, 2013. "SMC-super-2: an efficient algorithm for sequential analysis of state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 397-426, June.
    14. Gonzalez, Jhonny & Moriarty, John & Palczewski, Jan, 2017. "Bayesian calibration and number of jump components in electricity spot price models," Energy Economics, Elsevier, vol. 65(C), pages 375-388.
    15. Almut E. D. Veraart, 2008. "Impact of time–inhomogeneous jumps and leverage type effects on returns and realised variances," CREATES Research Papers 2008-57, Department of Economics and Business Economics, Aarhus University.
    16. Emanuele Taufer, 2008. "Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes," DISA Working Papers 0805, Department of Computer and Management Sciences, University of Trento, Italy, revised 07 Jul 2008.
    17. Asger Lunde & Anne Floor Brix & Wei Wei, 2015. "A Generalized Schwartz Model for Energy Spot Prices - Estimation using a Particle MCMC Method," CREATES Research Papers 2015-46, Department of Economics and Business Economics, Aarhus University.
    18. Szczepocki Piotr, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    19. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
    20. James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:10:y:2008:i:3:d:10.1007_s11009-007-9056-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.