IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v215y2024icp228-269.html
   My bibliography  Save this article

Valuation of option price in commodity markets described by a Markov-switching model: A case study of WTI crude oil market

Author

Listed:
  • Mehrdoust, Farshid
  • Noorani, Idin
  • Kanniainen, Juho

Abstract

This paper suggests a Markov-switching model to evaluate commodity futures and spot dynamics, such that the diffusion coefficients and jump size parameter are associated with a hidden Markov chain. We improve the current models in the literature of the commodity markets by modeling the sudden jumps in the commodity prices through the hidden Markov chain. From the crude oil spot price in West Texas Intermediate, we estimate the parameters of proposed Markov-switching model based on expectation–maximization algorithm. To perform this task, we apply this estimation algorithm to the model discretized by Euler scheme and provide some convergence analysis for this discretization method. There are options, such as European options, which are written on the commodity futures. In this study, we evaluate them under the regime-switching model with various economic states. In the following, we calibrate the option prices resulting from the proposed commodity model to a set of observed European call options written on crude oil futures. For this purpose, we first apply an inverse Fourier transform and obtain a semi-analytical option pricing formula. Then, we use the fast Fourier transform method to compute option prices. Since the investors need to calculate Greeks in order to understand the risk involved in option investments, the Greek formulas of Delta, Rho, Theta, and Gamma are derived.

Suggested Citation

  • Mehrdoust, Farshid & Noorani, Idin & Kanniainen, Juho, 2024. "Valuation of option price in commodity markets described by a Markov-switching model: A case study of WTI crude oil market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 228-269.
  • Handle: RePEc:eee:matcom:v:215:y:2024:i:c:p:228-269
    DOI: 10.1016/j.matcom.2023.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542300335X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.08.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching stochastic volatility model: estimation and calibration to VIX options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(1), pages 38-75, January.
    2. Leif Andersen, 2010. "Markov models for commodity futures: theory and practice," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 831-854.
    3. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    4. Chen, Shan & Insley, Margaret, 2012. "Regime switching in stochastic models of commodity prices: An application to an optimal tree harvesting problem," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 201-219.
    5. Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
    6. Fong, Wai Mun & See, Kim Hock, 2002. "A Markov switching model of the conditional volatility of crude oil futures prices," Energy Economics, Elsevier, vol. 24(1), pages 71-95, January.
    7. Erlwein, Christina & Benth, Fred Espen & Mamon, Rogemar, 2010. "HMM filtering and parameter estimation of an electricity spot price model," Energy Economics, Elsevier, vol. 32(5), pages 1034-1043, September.
    8. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
    9. Markus Hahn & Sylvia Frühwirth-Schnatter & Jörn Sass, 2009. "Estimating models based on Markov jump processes given fragmented observation series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(4), pages 403-425, December.
    10. Hiroyuki Okawa, 2023. "Markov-Regime Switches in Oil Markets: The Fear Factor Dynamics," JRFM, MDPI, vol. 16(2), pages 1-20, January.
    11. James L. Paddock & Daniel R. Siegel & James L. Smith, 1988. "Option Valuation of Claims on Real Assets: The Case of Offshore Petroleum Leases," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 103(3), pages 479-508.
    12. Andrew C. Harvey, 1990. "The Econometric Analysis of Time Series, 2nd Edition," MIT Press Books, The MIT Press, edition 2, volume 1, number 026208189x, April.
    13. Ben Hambly & Sam Howison & Tino Kluge, 2009. "Modelling spikes and pricing swing options in electricity markets," Quantitative Finance, Taylor & Francis Journals, vol. 9(8), pages 937-949.
    14. Yang Shen & Kun Fan & Tak Kuen Siu, 2014. "Option Valuation Under a Double Regime‐Switching Model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(5), pages 451-478, May.
    15. N. K. Nomikos & O. Soldatos, 2008. "Using Affine Jump Diffusion Models for Modelling and Pricing Electricity Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(1), pages 41-71.
    16. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    17. Griffin, J.E. & Steel, M.F.J., 2006. "Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility," Journal of Econometrics, Elsevier, vol. 134(2), pages 605-644, October.
    18. Luis Valdivieso & Wim Schoutens & Francis Tuerlinckx, 2009. "Maximum likelihood estimation in processes of Ornstein-Uhlenbeck type," Statistical Inference for Stochastic Processes, Springer, vol. 12(1), pages 1-19, February.
    19. Stéphane Goutte & Amine Ismail & Huyên Pham, 2017. "Regime-switching Stochastic Volatility Model : Estimation and Calibration to VIX options," Working Papers hal-01212018, HAL.
    20. Fred Espen Benth, 2021. "Pricing of Commodity and Energy Derivatives for Polynomial Processes," Mathematics, MDPI, vol. 9(2), pages 1-30, January.
    21. Robert J. Elliott & Leunglung Chan & Tak Kuen Siu, 2005. "Option pricing and Esscher transform under regime switching," Annals of Finance, Springer, vol. 1(4), pages 423-432, October.
    22. Crosby, John & Frau, Carme, 2022. "Jumps in commodity prices: New approaches for pricing plain vanilla options," Energy Economics, Elsevier, vol. 114(C).
    23. Pircalabu, A. & Benth, F.E., 2017. "A regime-switching copula approach to modeling day-ahead prices in coupled electricity markets," Energy Economics, Elsevier, vol. 68(C), pages 283-302.
    24. Farshid Mehrdoust & Idin Noorani, 2019. "Pricing S&P500 barrier put option of American type under Heston–CIR model with regime-switching," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 1-17, June.
    25. Christian-Oliver Ewald & Aihua Zhang & Zhe Zong, 2019. "On the calibration of the Schwartz two-factor model to WTI crude oil options and the extended Kalman Filter," Annals of Operations Research, Springer, vol. 282(1), pages 119-130, November.
    26. Farshid Mehrdoust & Idin Noorani, 2023. "Valuation of Spark-Spread Option Written on Electricity and Gas Forward Contracts Under Two-Factor Models with Non-Gaussian Lévy Processes," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 807-853, February.
    27. Noorani, Idin & Mehrdoust, Farshid & Nasroallah, Abdelaziz, 2021. "A generalized antithetic variates Monte-Carlo simulation method for pricing of Asian option in a Markov regime-switching model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 1-15.
    28. James E. Smith & Kevin F. McCardle, 1998. "Valuing Oil Properties: Integrating Option Pricing and Decision Analysis Approaches," Operations Research, INFORMS, vol. 46(2), pages 198-217, April.
    29. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    30. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    31. Postali, Fernando A.S. & Picchetti, Paulo, 2006. "Geometric Brownian Motion and structural breaks in oil prices: A quantitative analysis," Energy Economics, Elsevier, vol. 28(4), pages 506-522, July.
    32. Hanxue Yang & Juho Kanniainen, 2017. "Jump and Volatility Dynamics for the S&P 500: Evidence for Infinite-Activity Jumps with Non-Affine Volatility Dynamics from Stock and Option Markets," Review of Finance, European Finance Association, vol. 21(2), pages 811-844.
    33. Kanniainen, Juho & Lin, Binghuan & Yang, Hanxue, 2014. "Estimating and using GARCH models with VIX data for option valuation," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 200-211.
    34. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    35. Liu, Yue & Sun, Huaping & Zhang, Jijian & Taghizadeh-Hesary, Farhad, 2020. "Detection of volatility regime-switching for crude oil price modeling and forecasting," Resources Policy, Elsevier, vol. 69(C).
    36. Alizadeh, Amir H. & Nomikos, Nikos K. & Pouliasis, Panos K., 2008. "A Markov regime switching approach for hedging energy commodities," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1970-1983, September.
    37. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    38. Larsson, Karl & Nossman, Marcus, 2011. "Jumps and stochastic volatility in oil prices: Time series evidence," Energy Economics, Elsevier, vol. 33(3), pages 504-514, May.
    39. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    40. Graham Davis, 2012. "Technical Note: Simulating the Two-Factor Schwartz and Smith Model of Commodity Prices," The Engineering Economist, Taylor & Francis Journals, vol. 57(2), pages 130-140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehrdoust, Farshid & Noorani, Idin & Hamdi, Abdelouahed, 2023. "Two-factor Heston model equipped with regime-switching: American option pricing and model calibration by Levenberg–Marquardt optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 660-678.
    2. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    3. Zhang, Yue-Jun & Zhang, Lu, 2015. "Interpreting the crude oil price movements: Evidence from the Markov regime switching model," Applied Energy, Elsevier, vol. 143(C), pages 96-109.
    4. Fan, Kun & Shen, Yang & Siu, Tak Kuen & Wang, Rongming, 2015. "Valuing commodity options and futures options with changing economic conditions," Economic Modelling, Elsevier, vol. 51(C), pages 524-533.
    5. Noorani, Idin & Mehrdoust, Farshid & Nasroallah, Abdelaziz, 2021. "A generalized antithetic variates Monte-Carlo simulation method for pricing of Asian option in a Markov regime-switching model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 1-15.
    6. Insley, M.C. & Wirjanto, T.S., 2010. "Contrasting two approaches in real options valuation: Contingent claims versus dynamic programming," Journal of Forest Economics, Elsevier, vol. 16(2), pages 157-176, April.
    7. Joanna Janczura & Rafał Weron, 2012. "Efficient estimation of Markov regime-switching models: An application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 385-407, July.
    8. Chris Brooks & Marcel Prokopczuk, 2013. "The dynamics of commodity prices," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 527-542, March.
    9. Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
    10. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    11. Chevallier, Julien & Ielpo, Florian, 2017. "Investigating the leverage effect in commodity markets with a recursive estimation approach," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 763-778.
    12. Foo, Nam & Bloch, Harry & Salim, Ruhul, 2018. "The optimisation rule for investment in mining projects," Resources Policy, Elsevier, vol. 55(C), pages 123-132.
    13. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
    14. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    15. Zonggang Ma & Chaoqun Ma & Zhijian Wu, 2022. "Pricing commodity-linked bonds with stochastic convenience yield, interest rate and counterparty credit risk: application of Mellin transform methods," Review of Derivatives Research, Springer, vol. 25(1), pages 47-91, April.
    16. Cortazar, Gonzalo & Schwartz, Eduardo S., 2003. "Implementing a stochastic model for oil futures prices," Energy Economics, Elsevier, vol. 25(3), pages 215-238, May.
    17. Postali, Fernando A.S. & Picchetti, Paulo, 2006. "Geometric Brownian Motion and structural breaks in oil prices: A quantitative analysis," Energy Economics, Elsevier, vol. 28(4), pages 506-522, July.
    18. Almansour, Abdullah, 2016. "Convenience yield in commodity price modeling: A regime switching approach," Energy Economics, Elsevier, vol. 53(C), pages 238-247.
    19. Reus, Lorenzo & Pagnoncelli, Bernardo & Armstrong, Margaret, 2019. "Better management of production incidents in mining using multistage stochastic optimization," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    20. Joanna Janczura & Rafal Weron, 2012. "Inference for Markov-regime switching models of electricity spot prices," HSC Research Reports HSC/12/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:215:y:2024:i:c:p:228-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.