IDEAS home Printed from https://ideas.repec.org/a/eee/touman/v64y2018icp98-109.html
   My bibliography  Save this article

The time has come: Toward Bayesian SEM estimation in tourism research

Author

Listed:
  • Assaf, A. George
  • Tsionas, Mike
  • Oh, Haemoon

Abstract

While the Bayesian SEM approach is now receiving a strong attention in the literature, tourism studies still heavily rely on the covariance-based approach for SEM estimation. In a recent special issue dedicated to the topic, Zyphur and Oswald (2013) used the term “Bayesian revolution” to describe the rapid growth of the Bayesian approach across multiple social science disciplines. The method introduces several advantages that make SEM estimation more flexible and powerful. We aim in this paper to introduce tourism researchers to the power of the Bayesian approach and discuss its unique advantages over the covariance-based approach. We provide first some foundations of Bayesian estimation and inference. We then present an illustration of the method using a tourism application. The paper also conducts a Monte Carlo simulation to illustrate the performance of the Bayesian approach in small samples and discuss several complicated SEM contexts where the Bayesian approach provides unique advantages.

Suggested Citation

  • Assaf, A. George & Tsionas, Mike & Oh, Haemoon, 2018. "The time has come: Toward Bayesian SEM estimation in tourism research," Tourism Management, Elsevier, vol. 64(C), pages 98-109.
  • Handle: RePEc:eee:touman:v:64:y:2018:i:c:p:98-109
    DOI: 10.1016/j.tourman.2017.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0261517717301759
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.tourman.2017.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    2. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. D. B. Dunson, 2000. "Bayesian latent variable models for clustered mixed outcomes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 355-366.
    5. Jim Griffin & Mark Steel, 2007. "Bayesian stochastic frontier analysis using WinBUGS," Journal of Productivity Analysis, Springer, vol. 27(3), pages 163-176, June.
    6. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    7. Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huimin Song & Jamie M Chen & Yibin Chen, 2021. "Mediating and moderating effects in golf tourism: Evidence from Hainan Island," Tourism Economics, , vol. 27(3), pages 510-526, May.
    2. Loredana Manasia & Diana Popa & Gratiela Ianos, 2022. "Anatomy of Research Performance from a Bottom-Up Approach: Examination of Researchers’ Perspective," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    3. Gelashvili, Vera & Martínez-Navalón, Juan Gabriel & DeMatos, Nelson & de Brito Correia, Marisol, 2024. "Technological transformation: The importance of E-WOM and perceived privacy in the context of opinion platforms," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    4. Friedmann, Enav & Weiss-Sidi, Merav & Solodoha, Eliran, 2024. "Unveiling impact dynamics: Discriminatory brand advertisements, stress response, and the call for ethical marketing practices," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    2. Dingjing Shi & Xin Tong, 2017. "The Impact of Prior Information on Bayesian Latent Basis Growth Model Estimation," SAGE Open, , vol. 7(3), pages 21582440177, August.
    3. Wu, Ji & Guo, Mengmeng & Chen, Minghua & Jeon, Bang Nam, 2019. "Market power and risk-taking of banks: Some semiparametric evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 41(C).
    4. Deng, Yaguo, 2016. "Efficiency evaluation of Spanish hotel chains," DES - Working Papers. Statistics and Econometrics. WS 23897, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. José Luis Gallizo & Jordi Moreno & Manuel Salvador, 2015. "European banking integration: is foreign ownership affecting banking efficiency?," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 16(2), pages 340-368, April.
    6. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    7. Park, Byung-Jung & Zhang, Yunlong & Lord, Dominique, 2010. "Bayesian mixture modeling approach to account for heterogeneity in speed data," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 662-673, June.
    8. Wang, Luming & Finn, Adam, 2014. "A psychometric theory that measures up to marketing reality: An adapted Many Faceted IRT model," Australasian marketing journal, Elsevier, vol. 22(2), pages 93-102.
    9. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    10. Martín, Juan Carlos & Voltes-Dorta, Augusto, 2011. "The econometric estimation of airports' cost function," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 112-127, January.
    11. Olivier Parent & James P. LeSage, 2008. "Using the variance structure of the conditional autoregressive spatial specification to model knowledge spillovers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 235-256.
    12. Xiaokun Wang & Kara M. Kockelman, 2009. "Baysian Inference For Ordered Response Data With A Dynamic Spatial‐Ordered Probit Model," Journal of Regional Science, Wiley Blackwell, vol. 49(5), pages 877-913, December.
    13. Philippe Widmer, 2015. "Does prospective payment increase hospital (in)efficiency? Evidence from the Swiss hospital sector," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 16(4), pages 407-419, May.
    14. Carlos A. Abanto-Valle & Gabriel Rodríguez & Hernán B. Garrafa-Aragón, 2020. "Stochastic Volatility in Mean: Empirical Evidence from Stock Latin American Markets," Documentos de Trabajo / Working Papers 2020-481, Departamento de Economía - Pontificia Universidad Católica del Perú.
    15. Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
    16. Kazuhiko Kakamu, 2022. "Bayesian analysis of mixtures of lognormal distribution with an unknown number of components from grouped data," Papers 2210.05115, arXiv.org, revised Sep 2023.
    17. Marta Arbelo-Pérez & Pilar Pérez-Gómez & Antonio Arbelo, 2023. "Profit efficiency and its determinants in the agricultural sector: A Bayesian approach," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(11), pages 436-445.
    18. Michael Braun & Paul Damien, 2016. "Scalable Rejection Sampling for Bayesian Hierarchical Models," Marketing Science, INFORMS, vol. 35(3), pages 427-444, May.
    19. Marc R. Dotson & Joachim Büschken & Greg M. Allenby, 2020. "Explaining Preference Heterogeneity with Mixed Membership Modeling," Marketing Science, INFORMS, vol. 39(2), pages 407-426, March.
    20. Carnicero, José Antonio, 2008. "A semi-parametric model for circular data based on mixtures of beta distributions," DES - Working Papers. Statistics and Econometrics. WS ws081305, Universidad Carlos III de Madrid. Departamento de Estadística.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:touman:v:64:y:2018:i:c:p:98-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/tourism-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.