IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i506p647-660.html
   My bibliography  Save this article

Enriched Stick-Breaking Processes for Functional Data

Author

Listed:
  • Bruno Scarpa
  • David B. Dunson

Abstract

In many applications involving functional data, prior information is available about the proportion of curves having different attributes. It is not straightforward to include such information in existing procedures for functional data analysis. Generalizing the functional Dirichlet process (FDP), we propose a class of stick-breaking priors for distributions of functions. These priors incorporate functional atoms drawn from constrained stochastic processes. The stick-breaking weights are specified to allow user-specified prior probabilities for curve attributes, with hyperpriors accommodating uncertainty. Compared with the FDP, the random distribution is enriched for curves having attributes known to be common. Theoretical properties are considered, methods are developed for posterior computation, and the approach is illustrated using data on temperature curves in menstrual cycles.

Suggested Citation

  • Bruno Scarpa & David B. Dunson, 2014. "Enriched Stick-Breaking Processes for Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 647-660, June.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:506:p:647-660
    DOI: 10.1080/01621459.2013.866564
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2013.866564
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2013.866564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jamie L. Bigelow & David B. Dunson, 2007. "Bayesian Adaptive Regression Splines for Hierarchical Data," Biometrics, The International Biometric Society, vol. 63(3), pages 724-732, September.
    2. Shively, Thomas S. & Walker, Stephen G. & Damien, Paul, 2011. "Nonparametric function estimation subject to monotonicity, convexity and other shape constraints," Journal of Econometrics, Elsevier, vol. 161(2), pages 166-181, April.
    3. Bigelow, Jamie L. & Dunson, David B., 2009. "Bayesian Semiparametric Joint Models for Functional Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 26-36.
    4. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    5. Sonia Petrone & Michele Guindani & Alan E. Gelfand, 2009. "Hybrid Dirichlet mixture models for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 755-782, September.
    6. Gareth M. James, 2002. "Generalized linear models with functional predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 411-432, August.
    7. Abel Rodríguez & David B. Dunson & Alan E. Gelfand, 2009. "Bayesian nonparametric functional data analysis through density estimation," Biometrika, Biometrika Trust, vol. 96(1), pages 149-162.
    8. Jason A. Duan & Michele Guindani & Alan E. Gelfand, 2007. "Generalized Spatial Dirichlet Process Models," Biometrika, Biometrika Trust, vol. 94(4), pages 809-825.
    9. John A. Rice & Colin O. Wu, 2001. "Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves," Biometrics, The International Biometric Society, vol. 57(1), pages 253-259, March.
    10. Bruno Scarpa & David B. Dunson, 2009. "Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors," Biometrics, The International Biometric Society, vol. 65(3), pages 772-780, September.
    11. Sam Behseta & Robert E. Kass & Garrick L. Wallstrom, 2005. "Hierarchical models for assessing variability among functions," Biometrika, Biometrika Trust, vol. 92(2), pages 419-434, June.
    12. Rodríguez, Abel & Dunson, David B & Gelfand, Alan E, 2008. "The Nested Dirichlet Process," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1131-1154.
    13. Dunson, David B. & Herring, Amy H. & Siega-Riz, Anna Maria, 2008. "Bayesian Inference on Changes in Response Densities Over Predictor Clusters," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1508-1517.
    14. Griffin, J.E. & Steel, M.F.J., 2006. "Order-Based Dependent Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 179-194, March.
    15. Rodríguez, Abel & Dunson, David B. & Gelfand, Alan E., 2010. "Latent Stick-Breaking Processes," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 647-659.
    16. Shubhankar Ray & Bani Mallick, 2006. "Functional clustering by Bayesian wavelet methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Blasi, Pierpaolo & Martínez, Asael Fabian & Mena, Ramsés H. & Prünster, Igor, 2020. "On the inferential implications of decreasing weight structures in mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
    2. Daniel R. Kowal & Antonio Canale, 2021. "Semiparametric Functional Factor Models with Bayesian Rank Selection," Papers 2108.02151, arXiv.org, revised May 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Montagna & Surya T. Tokdar & Brian Neelon & David B. Dunson, 2012. "Bayesian Latent Factor Regression for Functional and Longitudinal Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1064-1073, December.
    2. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2014. "Beta-product dependent Pitman–Yor processes for Bayesian inference," Journal of Econometrics, Elsevier, vol. 180(1), pages 49-72.
    3. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2011. "Beta-product Poisson-Dirichlet Processes," DES - Working Papers. Statistics and Econometrics. WS 12160, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    5. Botts, Carsten H. & Daniels, Michael J., 2008. "A flexible approach to Bayesian multiple curve fitting," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5100-5120, August.
    6. Sonia Petrone & Michele Guindani & Alan E. Gelfand, 2009. "Hybrid Dirichlet mixture models for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 755-782, September.
    7. Igor Prünster & Matteo Ruggiero, 2011. "A Bayesian nonparametric approach to modeling market share dynamics," Carlo Alberto Notebooks 217, Collegio Carlo Alberto.
    8. Peter Müeller & Fernando A. Quintana & Garritt Page, 2018. "Nonparametric Bayesian inference in applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 175-206, June.
    9. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    10. Liverani, Silvia & Hastie, David I. & Azizi, Lamiae & Papathomas, Michail & Richardson, Sylvia, 2015. "PReMiuM: An R Package for Profile Regression Mixture Models Using Dirichlet Processes," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i07).
    11. Bruno Scarpa & David B. Dunson, 2009. "Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors," Biometrics, The International Biometric Society, vol. 65(3), pages 772-780, September.
    12. Jim Q. Smith & Paul E. Anderson & Silvia Liverani, 2008. "Separation measures and the geometry of Bayes factor selection for classification," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 957-980, November.
    13. Shamsi Zamenjani, Azam, 2021. "Do financial variables help predict the conditional distribution of the market portfolio?," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 327-345.
    14. Eric Coker & Robert Gunier & Asa Bradman & Kim Harley & Katherine Kogut & John Molitor & Brenda Eskenazi, 2017. "Association between Pesticide Profiles Used on Agricultural Fields near Maternal Residences during Pregnancy and IQ at Age 7 Years," IJERPH, MDPI, vol. 14(5), pages 1-20, May.
    15. Park, Yeonjoo & Simpson, Douglas G., 2019. "Robust probabilistic classification applicable to irregularly sampled functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 37-49.
    16. repec:jss:jstsof:40:i05 is not listed on IDEAS
    17. Christoph Hellmayr & Alan E. Gelfand, 2021. "A Partition Dirichlet Process Model for Functional Data Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 30-65, May.
    18. Daowen Zhang & Xihong Lin & MaryFran Sowers, 2007. "Two-Stage Functional Mixed Models for Evaluating the Effect of Longitudinal Covariate Profiles on a Scalar Outcome," Biometrics, The International Biometric Society, vol. 63(2), pages 351-362, June.
    19. Zahra Barzegar & Firoozeh Rivaz, 2020. "A scalable Bayesian nonparametric model for large spatio-temporal data," Computational Statistics, Springer, vol. 35(1), pages 153-173, March.
    20. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    21. Silvia Liverani & Lucy Leigh & Irene L. Hudson & Julie E. Byles, 2021. "Clustering method for censored and collinear survival data," Computational Statistics, Springer, vol. 36(1), pages 35-60, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:506:p:647-660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.