IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v59y2010i2p191-232.html
   My bibliography  Save this article

Geostatistical inference under preferential sampling

Author

Listed:
  • Peter J. Diggle
  • Raquel Menezes
  • Ting‐li Su

Abstract

Geostatistics involves the fitting of spatially continuous models to spatially discrete data. Preferential sampling arises when the process that determines the data locations and the process being modelled are stochastically dependent. Conventional geostatistical methods assume, if only implicitly, that sampling is non‐preferential. However, these methods are often used in situations where sampling is likely to be preferential. For example, in mineral exploration, samples may be concentrated in areas that are thought likely to yield high grade ore. We give a general expression for the likelihood function of preferentially sampled geostatistical data and describe how this can be evaluated approximately by using Monte Carlo methods. We present a model for preferential sampling and demonstrate through simulated examples that ignoring preferential sampling can lead to misleading inferences. We describe an application of the model to a set of biomonitoring data from Galicia, northern Spain, in which making allowance for preferential sampling materially changes the results of the analysis.

Suggested Citation

  • Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
  • Handle: RePEc:bla:jorssc:v:59:y:2010:i:2:p:191-232
    DOI: 10.1111/j.1467-9876.2009.00701.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2009.00701.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2009.00701.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roula Tsonaka & Geert Verbeke & Emmanuel Lesaffre, 2009. "A Semi-Parametric Shared Parameter Model to Handle Nonmonotone Nonignorable Missingness," Biometrics, The International Biometric Society, vol. 65(1), pages 81-87, March.
    2. Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
    3. Gelfand, Alan E. & Kottas, Athanasios & MacEachern, Steven N., 2005. "Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1021-1035, September.
    4. Haiqun Lin & Daniel O. Scharfstein & Robert A. Rosenheck, 2004. "Analysis of longitudinal data with irregular, outcome‐dependent follow‐up," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 791-813, August.
    5. Paul Fearnhead & Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Particle filters for partially observed diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 755-777, September.
    6. Xiao Song & Marie Davidian & Anastasios A. Tsiatis, 2002. "A Semiparametric Likelihood Approach to Joint Modeling of Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 58(4), pages 742-753, December.
    7. Martin Schlather & Paulo J. Ribeiro & Peter J. Diggle, 2004. "Detecting dependence between marks and locations of marked point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 79-93, February.
    8. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
    9. Ho, Lai Ping & Stoyan, D., 2008. "Modelling marked point patterns by intensity-marked Cox processes," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1194-1199, August.
    10. Julian Besag & Debashis Mondal, 2005. "First-order intrinsic autoregressions and the de Wijs process," Biometrika, Biometrika Trust, vol. 92(4), pages 909-920, December.
    11. Alexandros Beskos & Omiros Papaspiliopoulos & Gareth O. Roberts & Paul Fearnhead, 2006. "Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 333-382, June.
    12. Caroline Beunckens & Geert Molenberghs & Geert Verbeke & Craig Mallinckrodt, 2008. "A Latent-Class Mixture Model for Incomplete Longitudinal Gaussian Data," Biometrics, The International Biometric Society, vol. 64(1), pages 96-105, March.
    13. Michael L. Stein, 2005. "Space-Time Covariance Functions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 310-321, March.
    14. Griffin, J.E. & Steel, M.F.J., 2006. "Order-Based Dependent Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 179-194, March.
    15. Ryu, Duchwan & Sinha, Debajyoti & Mallick, Bani & Lipsitz, Stuart R. & Lipshultz, Steven E., 2007. "Longitudinal Studies With Outcome-Dependent Follow-up: Models and Bayesian Regression," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 952-961, September.
    16. Stuart R. Lipsitz & Garrett M. Fitzmaurice & Joseph G. Ibrahim & Richard Gelber & Steven Lipshultz, 2002. "Parameter Estimation in Longitudinal Studies with Outcome-Dependent Follow-Up," Biometrics, The International Biometric Society, vol. 58(3), pages 621-630, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Na Cai & Wenbin Lu & Hao Helen Zhang, 2012. "Time-Varying Latent Effect Model for Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 68(4), pages 1093-1102, December.
    2. Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
    3. Roula Tsonaka & Geert Verbeke & Emmanuel Lesaffre, 2009. "A Semi-Parametric Shared Parameter Model to Handle Nonmonotone Nonignorable Missingness," Biometrics, The International Biometric Society, vol. 65(1), pages 81-87, March.
    4. Hermann Singer, 2011. "Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 375-413, December.
    5. Shoji, Isao, 2013. "Filtering for partially observed diffusion and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4966-4976.
    6. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
    7. Isadora Antoniano-Villalobos & Stephen G. Walker, 2016. "A Nonparametric Model for Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 126-142, January.
    8. Janie Coulombe & Erica E. M. Moodie & Robert W. Platt, 2021. "Weighted regression analysis to correct for informative monitoring times and confounders in longitudinal studies," Biometrics, The International Biometric Society, vol. 77(1), pages 162-174, March.
    9. Richardson, Robert & Kottas, Athanasios & Sansó, Bruno, 2017. "Flexible integro-difference equation modeling for spatio-temporal data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 182-198.
    10. Yingye Zheng & Patrick J. Heagerty, 2007. "Prospective Accuracy for Longitudinal Markers," Biometrics, The International Biometric Society, vol. 63(2), pages 332-341, June.
    11. Konstantinos Kalogeropoulos & Gareth O. Roberts & Petros Dellaportas, 2007. "Inference for stochastic volatility models using time change transformations," Papers 0711.1594, arXiv.org.
    12. Brian J. Reich & Dipankar Bandyopadhyay & Howard D. Bondell, 2013. "A Nonparametric Spatial Model for Periodontal Data With Nonrandom Missingness," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 820-831, September.
    13. Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. Rizopoulos, Dimitris, 2012. "Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 491-501.
    15. Sonia Petrone & Michele Guindani & Alan E. Gelfand, 2009. "Hybrid Dirichlet mixture models for functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 755-782, September.
    16. Benjamin French & Patrick J. Heagerty, 2009. "Marginal Mark Regression Analysis of Recurrent Marked Point Process Data," Biometrics, The International Biometric Society, vol. 65(2), pages 415-422, June.
    17. Gutiérrez, Luis & Mena, Ramsés H. & Ruggiero, Matteo, 2016. "A time dependent Bayesian nonparametric model for air quality analysis," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 161-175.
    18. Paul Fearnhead & Omiros Papaspiliopoulos & Gareth O. Roberts & Andrew Stuart, 2010. "Random‐weight particle filtering of continuous time processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 497-512, September.
    19. Sara Wade & Stephen G. Walker & Sonia Petrone, 2014. "A Predictive Study of Dirichlet Process Mixture Models for Curve Fitting," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 580-605, September.
    20. González, Jorge & Barrientos, Andrés F. & Quintana, Fernando A., 2015. "Bayesian nonparametric estimation of test equating functions with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 222-244.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:59:y:2010:i:2:p:191-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.