Credit Risk Theoretical Model on the Base of DCC-GARCH in Time-Varying Parameters Framework
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
- An, Jaehyung & Mikhaylov, Alexey & Jung, Sang-Uk, 2021. "A Linear Programming approach for robust network revenue management in the airline industry," Journal of Air Transport Management, Elsevier, vol. 91(C).
- Aydin Aslan & Lars Poppe & Peter Posch, 2021. "Are Sustainable Companies More Likely to Default? Evidence from the Dynamics between Credit and ESG Ratings," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
- Shorouq Fathi Eletter & Saad Ghaleb Yaseen & Ghaleb Awad Elrefae, 2010. "Neuro-Based Artificial Intelligence Model for Loan Decisions," American Journal of Economics and Business Administration, Science Publications, vol. 2(1), pages 27-34, March.
- Kalli, Maria & Griffin, Jim E., 2014. "Time-varying sparsity in dynamic regression models," Journal of Econometrics, Elsevier, vol. 178(2), pages 779-793.
- Smith, L. Douglas & Lawrence, Edward C., 1995. "Forecasting losses on a liquidating long-term loan portfolio," Journal of Banking & Finance, Elsevier, vol. 19(6), pages 959-985, September.
- Angelini, Eliana & di Tollo, Giacomo & Roli, Andrea, 2008. "A neural network approach for credit risk evaluation," The Quarterly Review of Economics and Finance, Elsevier, vol. 48(4), pages 733-755, November.
- Joshua C. C. Chan & Eric Eisenstat, 2018.
"Bayesian model comparison for time‐varying parameter VARs with stochastic volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 509-532, June.
- Joshua C.C. Chan & Eric Eisenstat, 2015. "Bayesian model comparison for time-varying parameter VARs with stochastic volatility," CAMA Working Papers 2015-32, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Zhu, You & Zhou, Li & Xie, Chi & Wang, Gang-Jin & Nguyen, Truong V., 2019. "Forecasting SMEs' credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach," International Journal of Production Economics, Elsevier, vol. 211(C), pages 22-33.
- Giuseppe Orlando & Roberta Pelosi, 2020. "Non-Performing Loans for Italian Companies: When Time Matters. An Empirical Research on Estimating Probability to Default and Loss Given Default," IJFS, MDPI, vol. 8(4), pages 1-22, November.
- Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pejman Peykani & Mostafa Sargolzaei & Mohammad Hashem Botshekan & Camelia Oprean-Stan & Amir Takaloo, 2023. "Optimization of Asset and Liability Management of Banks with Minimum Possible Changes," Mathematics, MDPI, vol. 11(12), pages 1-24, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Gary Koop & Dimitris Korobilis, 2023.
"Bayesian Dynamic Variable Selection In High Dimensions,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
- Gary Koop & Dimitris Korobilis, 2018. "Bayesian dynamic variable selection in high dimensions," Papers 1809.03031, arXiv.org, revised May 2020.
- Korobilis, Dimitris & Koop, Gary, 2020. "Bayesian dynamic variable selection in high dimensions," MPRA Paper 100164, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2020. "Bayesian dynamic variable selection in high dimensions," Working Papers 2020_11, Business School - Economics, University of Glasgow.
- Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
- Florian Huber & Luca Rossini, 2020. "Inference in Bayesian Additive Vector Autoregressive Tree Models," Papers 2006.16333, arXiv.org, revised Mar 2021.
- Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
- Peter Knaus & Sylvia Fruhwirth-Schnatter, 2023. "The Dynamic Triple Gamma Prior as a Shrinkage Process Prior for Time-Varying Parameter Models," Papers 2312.10487, arXiv.org.
- Helmut Lutkepohl & Fei Shang & Luis Uzeda & Tomasz Wo'zniak, 2024.
"Partial Identification of Heteroskedastic Structural VARs: Theory and Bayesian Inference,"
Papers
2404.11057, arXiv.org.
- Helmut Lütkepohl & Fei Shang & Luis Uzeda & Tomasz Woźniak, 2024. "Partial Identification of Heteroskedastic Structural VARs: Theory and Bayesian Inference," Discussion Papers of DIW Berlin 2081, DIW Berlin, German Institute for Economic Research.
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Lopes, Hedibert F. & McCulloch, Robert E. & Tsay, Ruey S., 2022. "Parsimony inducing priors for large scale state–space models," Journal of Econometrics, Elsevier, vol. 230(1), pages 39-61.
- Carlos León & José Fernando Moreno & Jorge Cely, 2016.
"Whose Balance Sheet is this? Neural Networks for Banks’ Pattern Recognition,"
Borradores de Economia
959, Banco de la Republica de Colombia.
- León, C. & Moreno, José Fernando & Cely, Jorge, 2017. "Whose Balance Sheet is this? Neural Networks for Banks' Pattern Recognition," Discussion Paper 2017-009, Tilburg University, Center for Economic Research.
- León, C. & Moreno, José Fernando & Cely, Jorge, 2017. "Whose Balance Sheet is this? Neural Networks for Banks' Pattern Recognition," Other publications TiSEM 75d8648e-9855-4c5c-9aa9-0, Tilburg University, School of Economics and Management.
- León, Carlos & Barucca, Paolo & Acero, Oscar & Gage, Gerardo & Ortega, Fabio, 2020.
"Pattern recognition of financial institutions’ payment behavior,"
Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
- Carlos León & Paolo Barucca & Oscar Acero & Gerardo Gage & Fabio Ortega, 2020. "Pattern recognition of financial institutions’ payment behavior," Borradores de Economia 1130, Banco de la Republica de Colombia.
- Yu Zhao & Huaming Du & Qing Li & Fuzhen Zhuang & Ji Liu & Gang Kou, 2022. "A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective," Papers 2211.14997, arXiv.org, revised May 2023.
- Pfarrhofer, Michael, 2023.
"Measuring International Uncertainty Using Global Vector Autoregressions with Drifting Parameters,"
Macroeconomic Dynamics, Cambridge University Press, vol. 27(3), pages 770-793, April.
- Pfarrhofer, Michael, 2019. "Measuring international uncertainty using global vector autoregressions with drifting parameters," Working Papers in Economics 2019-3, University of Salzburg.
- Michael Pfarrhofer, 2019. "Measuring international uncertainty using global vector autoregressions with drifting parameters," Papers 1908.06325, arXiv.org, revised Dec 2019.
- Sylvia Fruhwirth-Schnatter & Peter Knaus, 2022. "Sparse Bayesian State-Space and Time-Varying Parameter Models," Papers 2207.12147, arXiv.org.
- Florian Huber & Gary Koop & Michael Pfarrhofer, 2020. "Bayesian Inference in High-Dimensional Time-varying Parameter Models using Integrated Rotated Gaussian Approximations," Papers 2002.10274, arXiv.org.
- Ajitha Kumari Vijayappan Nair Biju & Ann Susan Thomas & J Thasneem, 2024. "Examining the research taxonomy of artificial intelligence, deep learning & machine learning in the financial sphere—a bibliometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(1), pages 849-878, February.
- Anjali Chopra & Priyanka Bhilare, 2018. "Application of Ensemble Models in Credit Scoring Models," Business Perspectives and Research, , vol. 6(2), pages 129-141, July.
- Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
- Annalisa Cadonna & Sylvia Fruhwirth-Schnatter & Peter Knaus, 2019. "Triple the gamma -- A unifying shrinkage prior for variance and variable selection in sparse state space and TVP models," Papers 1912.03100, arXiv.org.
- Joshua C.C. Chan & Rodney W. Strachan, 2023.
"Bayesian State Space Models In Macroeconometrics,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
- Joshua C.C. Chan & Rodney W. Strachan, 2020. "Bayesian state space models in macroeconometrics," CAMA Working Papers 2020-90, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
More about this item
Keywords
default probability; scoring model; logistic regression; time-varying parameters; time series forecasting; ARIMA; DCC-GARCH; Kalman filter; state–space model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2423-:d:646356. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.