IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v81y2019i1d10.1007_s13171-018-0145-7.html
   My bibliography  Save this article

Geometric Sensitivity Measures for Bayesian Nonparametric Density Estimation Models

Author

Listed:
  • Abhijoy Saha

    (The Ohio State University)

  • Sebastian Kurtek

    (The Ohio State University)

Abstract

We propose a geometric framework to assess global sensitivity in Bayesian nonparametric models for density estimation. We study sensitivity of nonparametric Bayesian models for density estimation, based on Dirichlet-type priors, to perturbations of either the precision parameter or the base probability measure. To quantify the different effects of the perturbations of the parameters and hyperparameters in these models on the posterior, we define three geometrically-motivated global sensitivity measures based on geodesic paths and distances computed under the nonparametric Fisher-Rao Riemannian metric on the space of densities, applied to posterior samples of densities: (1) the Fisher-Rao distance between density averages of posterior samples, (2) the log-ratio of Karcher variances of posterior samples, and (3) the norm of the difference of scaled cumulative eigenvalues of empirical covariance operators obtained from posterior samples. We validate our approach using multiple simulation studies, and consider the problem of sensitivity analysis for Bayesian density estimation models in the context of three real datasets that have previously been studied.

Suggested Citation

  • Abhijoy Saha & Sebastian Kurtek, 2019. "Geometric Sensitivity Measures for Bayesian Nonparametric Density Estimation Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 104-143, February.
  • Handle: RePEc:spr:sankha:v:81:y:2019:i:1:d:10.1007_s13171-018-0145-7
    DOI: 10.1007/s13171-018-0145-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-018-0145-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-018-0145-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Berger & Elías Moreno & Luis Pericchi & M. Bayarri & José Bernardo & Juan Cano & Julián Horra & Jacinto Martín & David Ríos-Insúa & Bruno Betrò & A. Dasgupta & Paul Gustafson & Larry Wasserman &, 1994. "An overview of robust Bayesian analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(1), pages 5-124, June.
    2. Christopher A. Bush & Juhee Lee & Steven N. MacEachern, 2010. "Minimally informative prior distributions for non‐parametric Bayesian analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 253-268, March.
    3. Stephen G. Walker & Paul Damien & PuruShottam W. Laud & Adrian F. M. Smith, 1999. "Bayesian Nonparametric Inference for Random Distributions and Related Functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 485-527.
    4. Sebastian Kurtek & Karthik Bharath, 2015. "Bayesian sensitivity analysis with the Fisher–Rao metric," Biometrika, Biometrika Trust, vol. 102(3), pages 601-616.
    5. Griffin, J. E. & Steel, M. F. J., 2004. "Semiparametric Bayesian inference for stochastic frontier models," Journal of Econometrics, Elsevier, vol. 123(1), pages 121-152, November.
    6. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    7. Hongtu Zhu & Joseph G. Ibrahim & Niansheng Tang, 2011. "Bayesian influence analysis: a geometric approach," Biometrika, Biometrika Trust, vol. 98(2), pages 307-323.
    8. Jeremy E. Oakley & Anthony O'Hagan, 2004. "Probabilistic sensitivity analysis of complex models: a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 751-769, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
    2. Fabrizio Ruggeri, 2014. "On Some Optimal Bayesian Nonparametric Rules for Estimating Distribution Functions," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 289-304, June.
    3. Niansheng Tang & Sy-Miin Chow & Joseph G. Ibrahim & Hongtu Zhu, 2017. "Bayesian Sensitivity Analysis of a Nonlinear Dynamic Factor Analysis Model with Nonparametric Prior and Possible Nonignorable Missingness," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 875-903, December.
    4. J. Griffin, 2011. "Bayesian clustering of distributions in stochastic frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(3), pages 275-283, December.
    5. Ming Ouyang & Xinyuan Song, 2020. "Bayesian Local Influence of Generalized Failure Time Models with Latent Variables and Multivariate Censored Data," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 298-316, July.
    6. Kenneth A. Bollen & Surajit Ray & Jane Zavisca & Jeffrey J. Harden, 2012. "A Comparison of Bayes Factor Approximation Methods Including Two New Methods," Sociological Methods & Research, , vol. 41(2), pages 294-324, May.
    7. Qingrui Wang & Zhao Yao, 2025. "Bayesian influence diagnostics for a multivariate GARCH model," Statistical Papers, Springer, vol. 66(2), pages 1-27, February.
    8. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    9. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    10. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    11. Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    12. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    13. Aldo M. Garay & Francyelle L. Medina & Suelem Torres de Freitas & Víctor H. Lachos, 2024. "Bayesian analysis of linear regression models with autoregressive symmetrical errors and incomplete data," Statistical Papers, Springer, vol. 65(9), pages 5649-5690, December.
    14. Veiga, Sébastien Da & Marrel, Amandine, 2020. "Gaussian process regression with linear inequality constraints," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    15. N. T. Longford & Pierpaolo D'Urso, 2011. "Mixture models with an improper component," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2511-2521, January.
    16. Antonio Lijoi & Igor Pruenster, 2009. "Models beyond the Dirichlet process," ICER Working Papers - Applied Mathematics Series 23-2009, ICER - International Centre for Economic Research.
    17. Maria Kalli & Jim Griffin, 2015. "Flexible Modeling of Dependence in Volatility Processes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 102-113, January.
    18. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    19. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    20. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:81:y:2019:i:1:d:10.1007_s13171-018-0145-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.