IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1603.06805.html
   My bibliography  Save this paper

Using real-time cluster configurations of streaming asynchronous features as online state descriptors in financial markets

Author

Listed:
  • Dieter Hendricks

Abstract

We present a scheme for online, unsupervised state discovery and detection from streaming, multi-featured, asynchronous data in high-frequency financial markets. Online feature correlations are computed using an unbiased, lossless Fourier estimator. A high-speed maximum likelihood clustering algorithm is then used to find the feature cluster configuration which best explains the structure in the correlation matrix. We conjecture that this feature configuration is a candidate descriptor for the temporal state of the system. Using a simple cluster configuration similarity metric, we are able to enumerate the state space based on prevailing feature configurations. The proposed state representation removes the need for human-driven data pre-processing for state attribute specification, allowing a learning agent to find structure in streaming data, discern changes in the system, enumerate its perceived state space and learn suitable action-selection policies.

Suggested Citation

  • Dieter Hendricks, 2016. "Using real-time cluster configurations of streaming asynchronous features as online state descriptors in financial markets," Papers 1603.06805, arXiv.org, revised May 2017.
  • Handle: RePEc:arx:papers:1603.06805
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1603.06805
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dieter Hendricks & Tim Gebbie & Diane Wilcox, 2015. "Detecting intraday financial market states using temporal clustering," Papers 1508.04900, arXiv.org, revised Feb 2017.
    2. Christoph Frei & Nicholas Westray, 2015. "Optimal Execution Of A Vwap Order: A Stochastic Control Approach," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 612-639, July.
    3. Maria Elvira Mancino & Paul Malliavin, 2002. "Fourier series method for measurement of multivariate volatilities," Finance and Stochastics, Springer, vol. 6(1), pages 49-61.
    4. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 58-68, January.
    5. Giada, Lorenzo & Marsili, Matteo, 2002. "Algorithms of maximum likelihood data clustering with applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 315(3), pages 650-664.
    6. Dieter Hendricks & Diane Wilcox, 2014. "A reinforcement learning extension to the Almgren-Chriss model for optimal trade execution," Papers 1403.2229, arXiv.org.
    7. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick Chang & Roger Bukuru & Tim Gebbie, 2019. "Revisiting the Epps effect using volume time averaging: An exercise in R," Papers 1912.02416, arXiv.org, revised Feb 2020.
    2. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "Malliavin-Mancino estimators implemented with non-uniform fast Fourier transforms," Papers 2003.02842, arXiv.org, revised Nov 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    2. Woo Jae Byun & Bumkyu Choi & Seongmin Kim & Joohyun Jo, 2023. "Practical Application of Deep Reinforcement Learning to Optimal Trade Execution," FinTech, MDPI, vol. 2(3), pages 1-16, June.
    3. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    4. Patrick Chang & Roger Bukuru & Tim Gebbie, 2019. "Revisiting the Epps effect using volume time averaging: An exercise in R," Papers 1912.02416, arXiv.org, revised Feb 2020.
    5. Christopher Kath & Florian Ziel, 2020. "Optimal Order Execution in Intraday Markets: Minimizing Costs in Trade Trajectories," Papers 2009.07892, arXiv.org, revised Oct 2020.
    6. Schnaubelt, Matthias, 2022. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," European Journal of Operational Research, Elsevier, vol. 296(3), pages 993-1006.
    7. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    8. Barndorff-Nielsen, Ole E. & Hansen, Peter Reinhard & Lunde, Asger & Shephard, Neil, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Journal of Econometrics, Elsevier, vol. 162(2), pages 149-169, June.
    9. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    10. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    11. Söhnke M. Bartram & Jürgen Branke & Mehrshad Motahari, 2020. "Artificial intelligence in asset management," Working Papers 20202001, Cambridge Judge Business School, University of Cambridge.
    12. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "Using the Epps effect to detect discrete processes," Papers 2005.10568, arXiv.org, revised Oct 2021.
    13. Maria Elvira Mancino & Simona Sanfelici, 2011. "Covariance Estimation and Dynamic Asset-Allocation under Microstructure Effects via Fourier Methodology," Palgrave Macmillan Books, in: Greg N. Gregoriou & Razvan Pascalau (ed.), Financial Econometrics Modeling: Market Microstructure, Factor Models and Financial Risk Measures, chapter 1, pages 3-32, Palgrave Macmillan.
    14. Dicks, Matthew & Paskaramoorthy, Andrew & Gebbie, Tim, 2024. "A simple learning agent interacting with an agent-based market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    15. Feiyang Pan & Tongzhe Zhang & Ling Luo & Jia He & Shuoling Liu, 2022. "Learn Continuously, Act Discretely: Hybrid Action-Space Reinforcement Learning For Optimal Execution," Papers 2207.11152, arXiv.org.
    16. Soohan Kim & Jimyeong Kim & Hong Kee Sul & Youngjoon Hong, 2023. "An Adaptive Dual-level Reinforcement Learning Approach for Optimal Trade Execution," Papers 2307.10649, arXiv.org.
    17. Schnaubelt, Matthias, 2020. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," FAU Discussion Papers in Economics 05/2020, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    18. repec:hal:journl:peer-00815564 is not listed on IDEAS
    19. Markus Baldauf & Christoph Frei & Joshua Mollner, 2022. "Principal Trading Arrangements: When Are Common Contracts Optimal?," Management Science, INFORMS, vol. 68(4), pages 3112-3128, April.
    20. Patrick Chang & Etienne Pienaar & Tim Gebbie, 2020. "Malliavin-Mancino estimators implemented with non-uniform fast Fourier transforms," Papers 2003.02842, arXiv.org, revised Nov 2020.
    21. Philippe Bergault & Fayc{c}al Drissi & Olivier Gu'eant, 2021. "Multi-asset optimal execution and statistical arbitrage strategies under Ornstein-Uhlenbeck dynamics," Papers 2103.13773, arXiv.org, revised Mar 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1603.06805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.