IDEAS home Printed from https://ideas.repec.org/a/psc/journl/v7y2015i2p111-126.html
   My bibliography  Save this article

Copula-based Stochastic Frontier Model with Autocorrelated Inefficiency

Author

Listed:
  • Arabinda Das

    (Acharya Prafulla Chandra College)

Abstract

The paper considers the modeling and estimation of the stochastic frontier model where the error components are assumed to be correlated and the inefficiency error is assumed to be autocorrelated. The multivariate Farlie-Gumble-Morgenstern (FGM) and normal copula are used to capture both the contemporaneous and the temporal dependence between, and among, the noise and the inefficiency components. The intractable multiple integrals that appear in the likelihood function of the model are evaluated using the Halton sequence based Monte Carlo (MC) simulation technique. The consistency and the asymptotic efficiency of the resulting simulated maximum likelihood (SML) estimators of the present model parameters are established. Finally, the application of model using the SML method to the real life US airline data shows significant noise-inefficiency dependence and temporal dependence of inefficiency.

Suggested Citation

  • Arabinda Das, 2015. "Copula-based Stochastic Frontier Model with Autocorrelated Inefficiency," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 7(2), pages 111-126, June.
  • Handle: RePEc:psc:journl:v:7:y:2015:i:2:p:111-126
    as

    Download full text from publisher

    File URL: http://cejeme.eu/publishedarticles/2015-12-01-635740567480000000-8975.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:bla:obuest:v:61:y:1999:i:4:p:455-87 is not listed on IDEAS
    2. Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian efficiency analysis through individual effects: Hospital cost frontiers," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 77-105.
    3. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    4. Peter Haan & Arne Uhlendorff, 2006. "Estimation of multinomial logit models with unobserved heterogeneity using maximum simulated likelihood," Stata Journal, StataCorp LP, vol. 6(2), pages 229-245, June.
    5. William Greene, 2003. "Simulated Likelihood Estimation of the Normal-Gamma Stochastic Frontier Function," Journal of Productivity Analysis, Springer, vol. 19(2), pages 179-190, April.
    6. Murray D. Smith, 2008. "Stochastic frontier models with dependent error components," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 172-192, March.
    7. Lee, Lung-fei, 1999. "Statistical Inference With Simulated Likelihood Functions," Econometric Theory, Cambridge University Press, vol. 15(3), pages 337-360, June.
    8. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    9. Lee, Lung-Fei, 1995. "Asymptotic Bias in Simulated Maximum Likelihood Estimation of Discrete Choice Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 437-483, June.
    10. Koop, Gary & Osiewalski, Jacek & Steel, Mark F J, 1994. "Bayesian Efficiency Analysis with a Flexible Form: The AIM Cost Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 339-346, July.
    11. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    12. van den Broeck, Julien & Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1994. "Stochastic frontier models : A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 61(2), pages 273-303, April.
    13. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    14. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    15. Jim Griffin & Mark Steel, 2007. "Bayesian stochastic frontier analysis using WinBUGS," Journal of Productivity Analysis, Springer, vol. 27(3), pages 163-176, June.
    16. Fernandez, Carmen & Osiewalski, Jacek & Steel, Mark F. J., 1997. "On the use of panel data in stochastic frontier models with improper priors," Journal of Econometrics, Elsevier, vol. 79(1), pages 169-193, July.
    17. Jacek Osiewalski & Mark Steel, 1998. "Numerical Tools for the Bayesian Analysis of Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 10(1), pages 103-117, July.
    18. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    19. Debdas Bandyopadhyay & Arabinda Das, 2006. "On measures of technical inefficiency and production uncertainty in stochastic frontier production model with correlated error components," Journal of Productivity Analysis, Springer, vol. 26(2), pages 165-180, October.
    20. George E. Battese & Greg S. Corra, 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 169-179, December.
    21. Laroque, Guy & Salanie, Bernard, 1989. "Estimation of Multi-market Fix-Price Models: An Application of Pseudo Maximum Likelihood Methods," Econometrica, Econometric Society, vol. 57(4), pages 831-860, July.
    22. Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997. "Statistical inference in the multinomial multiperiod probit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
    23. Kumbhakar, Subal C., 1987. "The specification of technical and allocative inefficiency in stochastic production and profit frontiers," Journal of Econometrics, Elsevier, vol. 34(3), pages 335-348, March.
    24. Battese, George E. & Corra, Greg S., 1977. "Estimation Of A Production Frontier Model: With Application To The Pastoral Zone Of Eastern Australia," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 21(3), pages 1-11, December.
    25. Gary Koop & Jacek Osiewalski & Mark F. J. Steel, 1999. "The Components of Output Growth: A Stochastic Frontier Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(4), pages 455-487, November.
    26. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    27. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    28. Manoranjan Pal, 2004. "A Note on a Unified Approach to the Frontier Production Function Models With Correlated Non-Normal Error Components: The Case of Cross Section Data," Indian Economic Review, Department of Economics, Delhi School of Economics, vol. 39(1), pages 7-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christine Amsler & Peter Schmidt & Wen-Jen Tsay, 2019. "Evaluating the CDF of the distribution of the stochastic frontier composed error," Journal of Productivity Analysis, Springer, vol. 52(1), pages 29-35, December.
    2. Arisara Romyen & Chonrada Nunti & Paramin Neranon, 2023. "Trade efficiency under FTA for Thailand’s agricultural exports: copula-based gravity stochastic frontier model," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 12(1), pages 1-17, December.
    3. Arabinda Das, 2021. "Copula-based Stochastic Cost Frontier with Correlated Technical and Allocative Inefficiency," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(2), pages 207-222, June.
    4. Jerzy Marzec & Andrzej Pisulewski, 2017. "The Effect of CAP Subsidies on the Technical Efficiency of Polish Dairy Farms," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(3), pages 243-273, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    2. Kamil Makieła & Błażej Mazur, 2020. "Bayesian Model Averaging and Prior Sensitivity in Stochastic Frontier Analysis," Econometrics, MDPI, vol. 8(2), pages 1-22, April.
    3. Mike Tsionas & Marwan Izzeldin & Arne Henningsen & Evaggelos Paravalos, 2022. "Addressing endogeneity when estimating stochastic ray production frontiers: a Bayesian approach," Empirical Economics, Springer, vol. 62(3), pages 1345-1363, March.
    4. Massimo Del Gatto & Adriana Di Liberto & Carmelo Petraglia, 2011. "Measuring Productivity," Journal of Economic Surveys, Wiley Blackwell, vol. 25(5), pages 952-1008, December.
    5. Roberto Colombi & Gianmaria Martini & Giorgio Vittadini, 2017. "Determinants of transient and persistent hospital efficiency: The case of Italy," Health Economics, John Wiley & Sons, Ltd., vol. 26(S2), pages 5-22, September.
    6. Fernandez, Carmen & Osiewalski, Jacek & Steel, Mark F. J., 1997. "On the use of panel data in stochastic frontier models with improper priors," Journal of Econometrics, Elsevier, vol. 79(1), pages 169-193, July.
    7. Sickles, Robin C., 2005. "Panel estimators and the identification of firm-specific efficiency levels in parametric, semiparametric and nonparametric settings," Journal of Econometrics, Elsevier, vol. 126(2), pages 305-334, June.
    8. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    9. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    10. Pavlos Almanidis & Robin C. Sickles, 2016. "Banking Crises, Early Warning Models, and Efficiency," International Series in Operations Research & Management Science, in: Juan Aparicio & C. A. Knox Lovell & Jesus T. Pastor (ed.), Advances in Efficiency and Productivity, chapter 0, pages 331-364, Springer.
    11. Martini, Gianmaria & Scotti, Davide & Viola, Domenico & Vittadini, Giorgio, 2020. "Persistent and temporary inefficiency in airport cost function: An application to Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 999-1019.
    12. Belotti, Federico & Ilardi, Giuseppe, 2018. "Consistent inference in fixed-effects stochastic frontier models," Journal of Econometrics, Elsevier, vol. 202(2), pages 161-177.
    13. Tim J. Coelli, 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 219-245, December.
    14. Mamonov Mikhail E. & Parmeter Christopher F. & Prokhorov Artem B., 2022. "Dependence modeling in stochastic frontier analysis," Dependence Modeling, De Gruyter, vol. 10(1), pages 123-144, January.
    15. Fernández, C. & Osiewalski, J. & Steel, M.F.J., 1996. "On the Use of Panel Data in Bayesian Stochastic Frontier Models," Other publications TiSEM d27e7bcf-bb16-457a-934a-a, Tilburg University, School of Economics and Management.
    16. Martín Rossi, 2015. "The Econometrics Approach to the Measurement of Efficiency: A Survey," Working Papers 117, Universidad de San Andres, Departamento de Economia, revised Feb 2015.
    17. Carta, Alessandro & Steel, Mark F.J., 2012. "Modelling multi-output stochastic frontiers using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3757-3773.
    18. Supawat Rungsuriyawiboon & Chris O'Donnell, 2004. "Curvature-Constrained Estimates of Technical Efficiency and Returns to Scale for U.S. Electric Utilities," CEPA Working Papers Series WP072004, School of Economics, University of Queensland, Australia.
    19. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Tian, Zhen-Zhen & Yang, Xiao-Yuan & Wang, Jian-Lin, 2016. "Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS," Energy Economics, Elsevier, vol. 55(C), pages 272-283.
    20. Peter Dawson & Stephen Dobson & Bill Gerrard, 2000. "Stochastic Frontiers and the Temporal Structure of Managerial Efficiency in English Soccer," Journal of Sports Economics, , vol. 1(4), pages 341-362, November.

    More about this item

    Keywords

    stochastic frontier model; copula function; simulated maximum likelihood; Monte Carlo simulation;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:psc:journl:v:7:y:2015:i:2:p:111-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Damian Jelito (email available below). General contact details of provider: http://cejeme.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.