IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v180y2014i1p49-72.html
   My bibliography  Save this article

Beta-product dependent Pitman–Yor processes for Bayesian inference

Author

Listed:
  • Bassetti, Federico
  • Casarin, Roberto
  • Leisen, Fabrizio

Abstract

Multiple time series data may exhibit clustering over time and the clustering effect may change across different series. This paper is motivated by the Bayesian non-parametric modelling of the dependence between clustering effects in multiple time series analysis. We follow a Dirichlet process mixture approach and define a new class of multivariate dependent Pitman–Yor processes (DPY). The proposed DPY are represented in terms of vectors of stick-breaking processes which determine dependent clustering structures in the time series. We follow a hierarchical specification of the DPY base measure to account for various degrees of information pooling across the series. We discuss some theoretical properties of the DPY and use them to define Bayesian non-parametric repeated measurement and vector autoregressive models. We provide efficient Monte Carlo Markov Chain algorithms for posterior computation of the proposed models and illustrate the effectiveness of the method with a simulation study and an application to the United States and the European Union business cycle.

Suggested Citation

  • Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2014. "Beta-product dependent Pitman–Yor processes for Bayesian inference," Journal of Econometrics, Elsevier, vol. 180(1), pages 49-72.
  • Handle: RePEc:eee:econom:v:180:y:2014:i:1:p:49-72
    DOI: 10.1016/j.jeconom.2014.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407614000190
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2014.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chang-Jin Kim & Christian J. Murray, 2002. "Permanent and transitory components of recessions," Empirical Economics, Springer, vol. 27(2), pages 163-183.
    2. De Iorio, Maria & Muller, Peter & Rosner, Gary L. & MacEachern, Steven N., 2004. "An ANOVA Model for Dependent Random Measures," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 205-215, January.
    3. Canova, Fabio & Ciccarelli, Matteo, 2004. "Forecasting and turning point predictions in a Bayesian panel VAR model," Journal of Econometrics, Elsevier, vol. 120(2), pages 327-359, June.
    4. Kim, Chang-Jin & Piger, Jeremy, 2002. "Common stochastic trends, common cycles, and asymmetry in economic fluctuations," Journal of Monetary Economics, Elsevier, vol. 49(6), pages 1189-1211, September.
    5. Ed McKenzie, 1985. "An Autoregressive Process for Beta Random Variables," Management Science, INFORMS, vol. 31(8), pages 988-997, August.
    6. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    7. Min, Chung-ki & Zellner, Arnold, 1993. "Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rates," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 89-118, March.
    8. J. E. Griffin, 2011. "Inference in Infinite Superpositions of Non-Gaussian Ornstein--Uhlenbeck Processes Using Bayesian Nonparametic Methods," Journal of Financial Econometrics, Oxford University Press, vol. 9(3), pages 519-549, Summer.
    9. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    10. Nieto-Barajas, Luis E. & Walker, Stephen G., 2007. "Gibbs and autoregressive Markov processes," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1479-1485, August.
    11. Dunson, David B. & Xue, Ya & Carin, Lawrence, 2008. "The Matrix Stick-Breaking Process: Flexible Bayes Meta-Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 317-327, March.
    12. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    13. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    14. Rodríguez, Abel & Dunson, David B & Gelfand, Alan E, 2008. "The Nested Dirichlet Process," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1131-1154.
    15. Chib, Siddhartha & Greenberg, Edward, 1995. "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models," Journal of Econometrics, Elsevier, vol. 68(2), pages 339-360, August.
    16. Teh, Yee Whye & Jordan, Michael I. & Beal, Matthew J. & Blei, David M., 2006. "Hierarchical Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1566-1581, December.
    17. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    18. Sinae Kim & Mahlet G. Tadesse & Marina Vannucci, 2006. "Variable selection in clustering via Dirichlet process mixture models," Biometrika, Biometrika Trust, vol. 93(4), pages 877-893, December.
    19. Hans-Martin Krolzig, 2000. "Predicting Markov-Switching Vector Autoregressive Processes," Economics Series Working Papers 2000-W31, University of Oxford, Department of Economics.
    20. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    21. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
    22. Keisuke Hirano, 2002. "Semiparametric Bayesian Inference in Autoregressive Panel Data Models," Econometrica, Econometric Society, vol. 70(2), pages 781-799, March.
    23. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    24. Edoardo Otranto & Giampiero Gallo, 2002. "A Nonparametric Bayesian Approach To Detect The Number Of Regimes In Markov Switching Models," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 477-496.
    25. Ishwaran H. & James L. F, 2001. "Gibbs Sampling Methods for Stick Breaking Priors," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 161-173, March.
    26. Michael P. Clements & Hans-Martin Krolzig, 1998. "A comparison of the forecast performance of Markov-switching and threshold autoregressive models of US GNP," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 47-75.
    27. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    28. Yeonseung Chung & David Dunson, 2011. "The local Dirichlet process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 59-80, February.
    29. Griffin, J.E. & Steel, M.F.J., 2006. "Order-Based Dependent Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 179-194, March.
    30. Rodríguez, Abel & Dunson, David B. & Gelfand, Alan E., 2010. "Latent Stick-Breaking Processes," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 647-659.
    31. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1.
    32. Hatjispyros, Spyridon J. & Nicoleris, Theodoros & Walker, Stephen G., 2011. "Dependent mixtures of Dirichlet processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2011-2025, June.
    33. Peter Müller & Fernando Quintana & Gary Rosner, 2004. "A method for combining inference across related nonparametric Bayesian models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 735-749, August.
    34. Gerhard Bry & Charlotte Boschan, 1971. "Foreword to "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs"," NBER Chapters, in: Cyclical Analysis of Time Series: Selected Procedures and Computer Programs, pages -1, National Bureau of Economic Research, Inc.
    35. Olkin, Ingram & Liu, Ruixue, 2003. "A bivariate beta distribution," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 407-412, May.
    36. Leisen, Fabrizio & Lijoi, Antonio, 2011. "Vectors of two-parameter Poisson-Dirichlet processes," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 482-495, March.
    37. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    38. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    39. Taddy, Matthew A., 2010. "Autoregressive Mixture Models for Dynamic Spatial Poisson Processes: Application to Tracking Intensity of Violent Crime," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1403-1417.
    40. Lorenzo Trippa & Peter Müller & Wesley Johnson, 2011. "The multivariate beta process and an extension of the Polya tree model," Biometrika, Biometrika Trust, vol. 98(1), pages 17-34.
    41. Michael L. Pennell & David B. Dunson, 2006. "Bayesian Semiparametric Dynamic Frailty Models for Multiple Event Time Data," Biometrics, The International Biometric Society, vol. 62(4), pages 1044-1052, December.
    42. Jason A. Duan & Michele Guindani & Alan E. Gelfand, 2007. "Generalized Spatial Dirichlet Process Models," Biometrika, Biometrika Trust, vol. 94(4), pages 809-825.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsionas, Mike G. & Izzeldin, Marwan & Trapani, Lorenzo, 2022. "Estimation of large dimensional time varying VARs using copulas," European Economic Review, Elsevier, vol. 141(C).
    2. Fisher, Mark & Jensen, Mark J., 2022. "Bayesian nonparametric learning of how skill is distributed across the mutual fund industry," Journal of Econometrics, Elsevier, vol. 230(1), pages 131-153.
    3. Fisher, Mark & Jensen, Mark J., 2019. "Bayesian inference and prediction of a multiple-change-point panel model with nonparametric priors," Journal of Econometrics, Elsevier, vol. 210(1), pages 187-202.
    4. Jim E. Griffin & Fabrizio Leisen, 2017. "Compound random measures and their use in Bayesian non-parametrics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 525-545, March.
    5. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    6. Casarin, Roberto & Costola, Michele, 2019. "Structural changes in large economic datasets: A nonparametric homogeneity test," Economics Letters, Elsevier, vol. 176(C), pages 55-59.
    7. Galdi, Giulio & Casarin, Roberto & Ferrari, Davide & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Nowcasting industrial production using linear and non-linear models of electricity demand," Energy Economics, Elsevier, vol. 126(C).
    8. Кокорева Мария Сергеевна & Степанова Анастасия Николаевна, 2012. "Financial architecture and corporate performance: evidence from Russia," Journal of Corporate Finance Research Корпоративные финансы, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», issue 2 (22), pages 34-44.
    9. Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020. "A Scoring Rule for Factor and Autoregressive Models Under Misspecification," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
    10. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    11. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
    12. Marcellino, Massimiliano & Foroni, Claudia & Casarin, Roberto & Ravazzolo, Francesco, 2017. "Uncertainty Through the Lenses of A Mixed-Frequency Bayesian Panel Markov Switching Model," CEPR Discussion Papers 12339, C.E.P.R. Discussion Papers.
    13. Luis E. Nieto-Barajas & Fernando A. Quintana, 2016. "A Bayesian Non-Parametric Dynamic AR Model for Multiple Time Series Analysis," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(5), pages 675-689, September.
    14. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
    15. Casarin Roberto & Peruzzi Antonio, 2024. "A Dynamic Latent-Space Model for Asset Clustering," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 379-402, April.
    16. Mike Tsionas & Marwan Izzeldin & Lorenzo Trapani, 2019. "Bayesian estimation of large dimensional time varying VARs using copulas," Papers 1912.12527, arXiv.org.
    17. Lawless Caroline & Arbel Julyan, 2019. "A simple proof of Pitman–Yor’s Chinese restaurant process from its stick-breaking representation," Dependence Modeling, De Gruyter, vol. 7(1), pages 45-52, March.
    18. Zhang, Junyi & Dassios, Angelos, 2023. "Truncated two-parameter Poisson-Dirichlet approximation for Pitman-Yor process hierarchical models," LSE Research Online Documents on Economics 120294, London School of Economics and Political Science, LSE Library.
    19. Florian Huber & Luca Rossini, 2020. "Inference in Bayesian Additive Vector Autoregressive Tree Models," Papers 2006.16333, arXiv.org, revised Mar 2021.
    20. Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".
    21. Weixuan Zhu & Fabrizio Leisen, 2015. "A multivariate extension of a vector of two-parameter Poisson-Dirichlet processes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 89-105, March.
    22. Roberto Casarin & Domenico Sartore & Marco Tronzano, 2018. "A Bayesian Markov-Switching Correlation Model for Contagion Analysis on Exchange Rate Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 101-114, January.
    23. Jim Griffin & Maria Kalli & Mark Steel, 2018. "Discussion of “Nonparametric Bayesian Inference in Applications”: Bayesian nonparametric methods in econometrics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 207-218, June.
    24. Peluso, Stefano & Mira, Antonietta & Muliere, Pietro, 2015. "Reinforced urn processes for credit risk models," Journal of Econometrics, Elsevier, vol. 184(1), pages 1-12.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2011. "Beta-product Poisson-Dirichlet Processes," DES - Working Papers. Statistics and Econometrics. WS 12160, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    3. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Interactions between eurozone and US booms and busts: A Bayesian panel Markov-switching VAR model," Working Papers 2013:17, Department of Economics, University of Venice "Ca' Foscari", revised 2014.
    4. Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".
    5. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    6. Knut Are Aastveit & Anne Sofie Jore & Francesco Ravazzolo, 2014. "Forecasting recessions in real time," Working Paper 2014/02, Norges Bank.
    7. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
    8. Pirschel, Inske, 2016. "Forecasting euro area recessions in real-time," Kiel Working Papers 2020, Kiel Institute for the World Economy (IfW Kiel).
    9. Peluso, Stefano & Mira, Antonietta & Muliere, Pietro, 2015. "Reinforced urn processes for credit risk models," Journal of Econometrics, Elsevier, vol. 184(1), pages 1-12.
    10. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    11. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    12. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    13. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    14. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    15. Mr. Matteo Ciccarelli & Mr. Alessandro Rebucci, 2003. "Bayesian Vars: A Survey of the Recent Literature with An Application to the European Monetary System," IMF Working Papers 2003/102, International Monetary Fund.
    16. Lhuissier, Stéphane, 2017. "Financial intermediaries’ instability and euro area macroeconomic dynamics," European Economic Review, Elsevier, vol. 98(C), pages 49-72.
    17. Matteo Iacopini & Luca Rossini, 2019. "Bayesian nonparametric graphical models for time-varying parameters VAR," Papers 1906.02140, arXiv.org.
    18. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    19. Leeper, Eric M. & Zha, Tao, 2003. "Modest policy interventions," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1673-1700, November.
    20. Niccolò Casnici & Pierpaolo Dondio & Roberto Casarin & Flaminio Squazzoni, 2015. "Decrypting Financial Markets through E-Joint Attention Efforts: On-Line Adaptive Networks of Investors in Periods of Market Uncertainty," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-15, August.

    More about this item

    Keywords

    Bayesian non-parametrics; Dirichlet process; Panel vector autoregressive process; Pitman–Yor process; Stick-breaking process;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:180:y:2014:i:1:p:49-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.