IDEAS home Printed from https://ideas.repec.org/e/c/pda141.html
   My authors  Follow this author

Rainer Dahlhaus

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Dahlhaus, R. & Neumann, M. & Von Sachs, R., 1997. "Nonlinear Wavelet Estimation of Time-Varying Autoregressive Processes," SFB 373 Discussion Papers 1997,34, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

    Cited by:

    1. Offer Lieberman & Peter C.B. Phillips, 2013. "Norming Rates and Limit Theory for Some Time-Varying Coefficient Autoregressions," Cowles Foundation Discussion Papers 1916, Cowles Foundation for Research in Economics, Yale University.
    2. Panayiotis Tzeremes, 2020. "The impact of total factor productivity on energy consumption and CO2 emissions in G20 countries," Economics Bulletin, AccessEcon, vol. 40(3), pages 2179-2192.
    3. Hoffmann, Marc, 1999. "On nonparametric estimation in nonlinear AR(1)-models," Statistics & Probability Letters, Elsevier, vol. 44(1), pages 29-45, August.
    4. Michael Vogt, 2012. "Nonparametric regression for locally stationary time series," CeMMAP working papers CWP22/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Dennis Kristensen, 2008. "Uniform Convergence Rates of Kernel Estimators with Heterogenous, Dependent Data," CREATES Research Papers 2008-37, Department of Economics and Business Economics, Aarhus University.
    6. Dahlhaus, Rainer & Neumann, Michael H., 2001. "Locally adaptive fitting of semiparametric models to nonstationary time series," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 277-308, February.
    7. G. E. Salcedo & R. F. Porto & S. Y. Roa & F. R. Momo, 2012. "A wavelet-based time-varying autoregressive model for non-stationary and irregular time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2313-2325, June.
    8. Sato, Joao R. & Morettin, Pedro A. & Arantes, Paula R. & Amaro Jr., Edson, 2007. "Wavelet based time-varying vector autoregressive modelling," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5847-5866, August.
    9. Stephanos Papadamou & Nikolaos A. Kyriazis & Panayiotis G. Tzeremes, 2019. "Spillover Effects of US QE and QE Tapering on African and Middle Eastern Stock Indices," JRFM, MDPI, vol. 12(2), pages 1-20, April.
    10. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    11. Shahbaz, Muhammad & Kumar, Mantu & Shah, Syed Hasanat & Sato, João Ricardo, 2016. "Time-Varying Analysis of CO2 Emissions, Energy Consumption, and Economic Growth Nexus: Statistical Experience in Next 11 Countries," MPRA Paper 73395, University Library of Munich, Germany, revised 28 Aug 2016.
    12. Yayi Yan & Jiti Gao & Bin peng, 2020. "A Class of Time-Varying Vector Moving Average (infinity) Models," Monash Econometrics and Business Statistics Working Papers 39/20, Monash University, Department of Econometrics and Business Statistics.
    13. Yang Li & Wei-Gang Cui & Mei-Lin Luo & Ke Li & Lina Wang, 2017. "High-resolution time–frequency representation of EEG data using multi-scale wavelets," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(12), pages 2658-2668, September.
    14. Wolfgang Härdle & Torsten Kleinow & Rolf Tschernig, 2001. "Web Quantlets for Time Series Analysis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 179-188, March.
    15. Piotr Fryzlewicz & Sébastien Bellegem & Rainer Sachs, 2003. "Forecasting non-stationary time series by wavelet process modelling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 737-764, December.
    16. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    17. Battaglia, Francesco, 2005. "Outliers in functional autoregressive time series," Statistics & Probability Letters, Elsevier, vol. 72(4), pages 323-332, May.
    18. Yayi Yan & Jiti Gao & Bin Peng, 2020. "A Class of Time-Varying Vector Moving Average Models: Nonparametric Kernel Estimation and Application," Papers 2010.01492, arXiv.org.
    19. Ajmi, Ahdi Noomen & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Sato, João Ricardo, 2015. "On the relationships between CO2 emissions, energy consumption and income: The importance of time variation," Energy Economics, Elsevier, vol. 49(C), pages 629-638.
    20. Chang Chiann & Pedro Morettin, 1999. "Estimation of Time Varying Linear Systems," Statistical Inference for Stochastic Processes, Springer, vol. 2(3), pages 253-285, October.

Articles

  1. Tata Subba Rao & Granville Tunnicliffe Wilson & Michael Eichler & Rainer Dahlhaus & Johannes Dueck, 2017. "Graphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 225-242, March.

    Cited by:

    1. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    2. Kajita, Mami & Kajita, Seiji, 2020. "Crime prediction by data-driven Green’s function method," International Journal of Forecasting, Elsevier, vol. 36(2), pages 480-488.
    3. Mohammad Masoud Rahimi & Elham Naghizade & Mark Stevenson & Stephan Winter, 2023. "SentiHawkes: a sentiment-aware Hawkes point process to model service quality of public transport using Twitter data," Public Transport, Springer, vol. 15(2), pages 343-376, June.
    4. Baichuan Yuan & Frederic P. Schoenberg & Andrea L. Bertozzi, 2021. "Fast estimation of multivariate spatiotemporal Hawkes processes and network reconstruction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1127-1152, December.
    5. Huang, Lorick & Khabou, Mahmoud, 2023. "Nonlinear Poisson autoregression and nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 201-241.
    6. Bufalo, Michele & Ceci, Claudia & Orlando, Giuseppe, 2024. "Addressing the financial impact of natural disasters in the era of climate change," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    7. Massil Achab & Emmanuel Bacry & Jean-Franc{c}ois Muzy & Marcello Rambaldi, 2017. "Analysis of order book flows using a nonparametric estimation of the branching ratio matrix," Papers 1706.03411, arXiv.org.
    8. A E Clements & A S Hurn & K A Lindsay & V Volkov, 2023. "Estimating a Non-parametric Memory Kernel for Mutually Exciting Point Processes," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1759-1790.
    9. De Santis, E. & Galves, A. & Nappo, G. & Piccioni, M., 2022. "Estimating the interaction graph of stochastic neuronal dynamics by observing only pairs of neurons," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 224-247.
    10. Timoth'ee Fabre & Ioane Muni Toke, 2024. "Neural Hawkes: Non-Parametric Estimation in High Dimension and Causality Analysis in Cryptocurrency Markets," Papers 2401.09361, arXiv.org, revised Nov 2024.
    11. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    12. Lu-ning Zhang & Jian-wei Liu & Xin Zuo, 2023. "Doubly time-dependent Hawkes process and applications in failure sequence analysis," Computational Statistics, Springer, vol. 38(2), pages 1057-1093, June.
    13. Qi Guo & Bruno Remillard & Anatoliy Swishchuk, 2020. "Multivariate General Compound Point Processes in Limit Order Books," Papers 2008.00124, arXiv.org.

  2. Rainer Dahlhaus & Jan C. Neddermeyer, 2013. "Online Spot Volatility-Estimation and Decomposition with Nonlinear Market Microstructure Noise Models," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 174-212, December.

    Cited by:

    1. Timo Dimitriadis & Roxana Halbleib & Jeannine Polivka & Jasper Rennspies & Sina Streicher & Axel Friedrich Wolter, 2022. "Efficient Sampling for Realized Variance Estimation in Time-Changed Diffusion Models," Papers 2212.11833, arXiv.org, revised Dec 2023.
    2. Yoann Potiron & Per Mykland, 2016. "Local Parametric Estimation in High Frequency Data," Papers 1603.05700, arXiv.org, revised Aug 2018.
    3. Vladimír Holý & Petra Tomanová, 2023. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 463-485, June.
    4. Istvan Barra & Siem Jan Koopman & Agnieszka Borowska, 2016. "Bayesian Dynamic Modeling of High-Frequency Integer Price Changes," Tinbergen Institute Discussion Papers 16-028/III, Tinbergen Institute, revised 16 Feb 2018.
    5. Vladim'ir Hol'y & Petra Tomanov'a, 2020. "Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data," Papers 2003.13062, arXiv.org, revised Dec 2021.

  3. Konstantinos Paraschakis & Rainer Dahlhaus, 2012. "Frequency and phase estimation in time series with quasi periodic components," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 13-31, January.

    Cited by:

    1. Bardet, Jean-Marc & Doukhan, Paul & Wintenberger, Olivier, 2022. "Contrast estimation of time-varying infinite memory processes," Stochastic Processes and their Applications, Elsevier, vol. 152(C), pages 32-85.

  4. Dahlhaus, Rainer, 2009. "Local inference for locally stationary time series based on the empirical spectral measure," Journal of Econometrics, Elsevier, vol. 151(2), pages 101-112, August.

    Cited by:

    1. Gadea Rivas, María Dolores, 2017. "Trends in distributional characteristics : Existence of global warming," UC3M Working papers. Economics 24121, Universidad Carlos III de Madrid. Departamento de Economía.
    2. Roueff, Francois & von Sachs, Rainer & Sansonnet, Laure, 2015. "Time-frequency analysis of locally stationary Hawkes processes," LIDAM Discussion Papers ISBA 2015011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Rasmus Tangsgaard Varneskov, 2011. "Flat-Top Realized Kernel Estimation of Quadratic Covariation with Non-Synchronous and Noisy Asset Prices," CREATES Research Papers 2011-35, Department of Economics and Business Economics, Aarhus University.
    4. Ruprecht Puchstein & Philip Preuß, 2016. "Testing for Stationarity in Multivariate Locally Stationary Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 3-29, January.
    5. Barigozzi, Matteo & Hallin, Marc & Soccorsi, Stefano & von Sachs, Rainer, 2020. "Time-varying general dynamic factor models and the measurement of financial connectedness," LIDAM Reprints ISBA 2020015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Kawka, Rafael, 2022. "Convergence of spectral density estimators in the locally stationary framework," Econometrics and Statistics, Elsevier, vol. 24(C), pages 94-115.
    7. Efstathios Paparoditis & Philip Preuß, 2016. "On Local Power Properties of Frequency Domain-based Tests for Stationarity," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 664-682, September.
    8. Inder Tecuapetla-Gómez & Michael Nussbaum, 2012. "On large deviations in testing simple hypotheses for locally stationary Gaussian processes," Statistical Inference for Stochastic Processes, Springer, vol. 15(3), pages 225-239, October.
    9. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    10. Roueff, François & von Sachs, Rainer, 2011. "Locally stationary long memory estimation," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 813-844, April.
    11. James E. Payne & Xiaojin Sun, 2023. "Time‐varying connectedness of metropolitan housing markets," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 51(2), pages 470-502, March.
    12. Roueff, François & von Sachs, Rainer & Sansonnet, Laure, 2016. "Locally stationary Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1710-1743.
    13. Tata Subba Rao & Granville Tunnicliffe Wilson & Joao Jesus & Richard E. Chandler, 2017. "Inference with the Whittle Likelihood: A Tractable Approach Using Estimating Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 204-224, March.
    14. Philip Preuss & Mathias Vetter & Holger Dette, 2013. "Testing Semiparametric Hypotheses in Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 417-437, September.

  5. Sébastien Van Bellegem & Rainer Dahlhaus, 2006. "Semiparametric estimation by model selection for locally stationary processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(5), pages 721-746, November.

    Cited by:

    1. Dahlhaus, Rainer, 2009. "Local inference for locally stationary time series based on the empirical spectral measure," Journal of Econometrics, Elsevier, vol. 151(2), pages 101-112, August.
    2. Beran, Jan, 2007. "On parameter estimation for locally stationary long-memory processes," CoFE Discussion Papers 07/13, University of Konstanz, Center of Finance and Econometrics (CoFE).
    3. Abdelkamel Alj & Christophe Ley & Guy Melard, 2015. "Asymptotic Properties of QML Estimators for VARMA Models with Time-Dependent Coefficients: Part I," Working Papers ECARES ECARES 2015-21, ULB -- Universite Libre de Bruxelles.
    4. Abdelkamel Alj & Rajae Azrak & Christophe Ley & Guy Mélard, 2017. "Asymptotic Properties of QML Estimators for VARMA Models with Time-dependent Coefficients," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 617-635, September.
    5. Eckley, Idris A. & Nason, Guy P., 2011. "LS2W: Implementing the Locally Stationary 2D Wavelet Process Approach in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i03).
    6. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    7. VAN BELLEGEM, Sébastien, 2011. "Locally stationary volatility modelling," LIDAM Discussion Papers CORE 2011041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Marios Sergides & Efstathios Paparoditis, 2009. "Frequency Domain Tests of Semiparametric Hypotheses for Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 800-821, December.
    9. Cardinali Alessandro & Nason Guy P, 2011. "Costationarity of Locally Stationary Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 2(2), pages 1-35, January.

  6. Brockwell, P. J. & Dahlhaus, R., 2004. "Generalized Levinson-Durbin and Burg algorithms," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 129-149.

    Cited by:

    1. Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
    2. Lux, Thomas & Morales-Arias, Leonardo, 2010. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2676-2692, November.
    3. Lux, Thomas & Morales-Arias, Leonardo, 2010. "Relative forecasting performance of volatility models: Monte Carlo evidence," Kiel Working Papers 1582, Kiel Institute for the World Economy (IfW Kiel).
    4. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    5. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
    6. Proietti, Tommaso, 2011. "Direct and iterated multistep AR methods for difference stationary processes," International Journal of Forecasting, Elsevier, vol. 27(2), pages 266-280, April.
    7. Tommaso Proietti, 2016. "The Multistep Beveridge--Nelson Decomposition," Econometric Reviews, Taylor & Francis Journals, vol. 35(3), pages 373-395, March.
    8. Sattarhoff, Cristina & Lux, Thomas, 2021. "Forecasting the Variability of Stock Index Returns with the Multifractal Random Walk Model for Realized Volatilities," Economics Working Papers 2021-02, Christian-Albrechts-University of Kiel, Department of Economics.
    9. Zikes, Filip & Barunik, Jozef & Shenai, Nikhil, 2015. "Modeling and forecasting persistent financial durations," FinMaP-Working Papers 36, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    10. Sattarhoff, Cristina & Lux, Thomas, 2023. "Forecasting the variability of stock index returns with the multifractal random walk model for realized volatilities," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1678-1697.
    11. Lux, Thomas, 2004. "The Markov-switching multi-fractal model of asset returns: GMM estimation and linear forecasting of volatility," Economics Working Papers 2004-11, Christian-Albrechts-University of Kiel, Department of Economics.
    12. Lux, Thomas, 2003. "The multi-fractal model of asset returns: Its estimation via GMM and its use for volatility forecasting," Economics Working Papers 2003-13, Christian-Albrechts-University of Kiel, Department of Economics.
    13. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2015. "Modeling and Forecasting Carbon Dioxide Emission Allowance Spot Price Volatility: Multifractal vs. GARCH-type Volatility Models," FinMaP-Working Papers 46, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    14. Thomas Lux & Mawuli K. Segnon & Rangan Gupta, 2015. "Modeling and Forecasting Crude Oil Price Volatility: Evidence from Historical and Recent Data," Working Papers 201511, University of Pretoria, Department of Economics.
    15. Nasr, Adnen Ben & Lux, Thomas & Ajm, Ahdi Noomen & Gupta, Rangan, 2014. "Forecasting the volatility of the dow jones islamic stock market index: Long memory vs. regime switching," Economics Working Papers 2014-07, Christian-Albrechts-University of Kiel, Department of Economics.
    16. Lux, Thomas & Morales-Arias, Leonardo, 2009. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Kiel Working Papers 1532, Kiel Institute for the World Economy (IfW Kiel).
    17. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
    18. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    19. Shaman, Paul, 2010. "Generalized Levinson-Durbin sequences, binomial coefficients and autoregressive estimation," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1263-1273, May.

  7. Dahlhaus, Rainer & Neumann, Michael H., 2001. "Locally adaptive fitting of semiparametric models to nonstationary time series," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 277-308, February.

    Cited by:

    1. Dahlhaus, Rainer, 2009. "Local inference for locally stationary time series based on the empirical spectral measure," Journal of Econometrics, Elsevier, vol. 151(2), pages 101-112, August.
    2. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Euan T. McGonigle & Rebecca Killick & Matthew A. Nunes, 2022. "Trend locally stationary wavelet processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 895-917, November.
    4. Gabe Chandler & Wolfgang Polonik, 2017. "Residual Empirical Processes and Weighted Sums for Time-Varying Processes with Applications to Testing for Homoscedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 72-98, January.
    5. Olsen, Lena Ringstad & Chaudhuri, Probal & Godtliebsen, Fred, 2008. "Multiscale spectral analysis for detecting short and long range change points in time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3310-3330, March.
    6. Roueff, François & von Sachs, Rainer, 2011. "Locally stationary long memory estimation," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 813-844, April.
    7. Marios Sergides & Efstathios Paparoditis, 2009. "Frequency Domain Tests of Semiparametric Hypotheses for Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 800-821, December.

  8. Zhao‐Guo Chen & Ka Ho Wu & Rainer Dahlhaus, 2000. "Hidden Frequency Estimation with Data Tapers," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(2), pages 113-142, March.

    Cited by:

    1. McCoy, E. J. & Stephens, D. A., 2004. "Bayesian time series analysis of periodic behaviour and spectral structure," International Journal of Forecasting, Elsevier, vol. 20(4), pages 713-730.
    2. Ollinger, Michael, 2024. "Recall characteristics and food safety process control," Food Policy, Elsevier, vol. 124(C).
    3. Chen, Bei & Gel, Yulia R., 2010. "Autoregressive frequency detection using Regularized Least Squares," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1712-1727, August.

  9. Rainer Dahlhaus & Liudas Giraitis, 1998. "On the Optimal Segment Length for Parameter Estimates for Locally Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(6), pages 629-655, November.

    Cited by:

    1. Alessandro Casini & Pierre Perron, 2021. "Change-Point Analysis of Time Series with Evolutionary Spectra," Papers 2106.02031, arXiv.org, revised Aug 2024.
    2. Alessandro Casini & Pierre Perron, 2021. "Prewhitened Long-Run Variance Estimation Robust to Nonstationarity," Papers 2103.02235, arXiv.org, revised Aug 2024.
    3. Beran, Jan, 2007. "On parameter estimation for locally stationary long-memory processes," CoFE Discussion Papers 07/13, University of Konstanz, Center of Finance and Econometrics (CoFE).
    4. Alessandro Casini, 2021. "Theory of Evolutionary Spectra for Heteroskedasticity and Autocorrelation Robust Inference in Possibly Misspecified and Nonstationary Models," Papers 2103.02981, arXiv.org, revised Aug 2024.
    5. Alessandro Casini, 2022. "Theory of Evolutionary Spectra for Heteroskedasticity and Autocorrelation Robust Inference in Possibly Misspecified and Nonstationary Models," CEIS Research Paper 539, Tor Vergata University, CEIS, revised 11 Apr 2022.
    6. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023. "Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.
    7. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    8. Zani, Marguerite, 2002. "Large Deviations for Quadratic Forms of Locally Stationary Processes," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 205-228, May.
    9. Tsukasa Hokimoto & Kunio Shimizu, 2008. "An angular–linear time series model for waveheight prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 781-800, December.
    10. Kley, Tobias & Preuss, Philip & Fryzlewicz, Piotr, 2019. "Predictive, finite-sample model choice for time series under stationarity and non-stationarity," LSE Research Online Documents on Economics 101748, London School of Economics and Political Science, LSE Library.
    11. Schnaubelt, Matthias, 2019. "A comparison of machine learning model validation schemes for non-stationary time series data," FAU Discussion Papers in Economics 11/2019, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    12. Giraitis, L. & Kapetanios, G. & Yates, T., 2014. "Inference on stochastic time-varying coefficient models," Journal of Econometrics, Elsevier, vol. 179(1), pages 46-65.

  10. Dahlhaus, R., 1996. "On the Kullback-Leibler information divergence of locally stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 139-168, March.

    Cited by:

    1. Ian Dew-Becker & Rhys Bidder, 2015. "Long-Run Risk is the Worst-Case Scenario," 2015 Meeting Papers 490, Society for Economic Dynamics.
    2. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    3. Roueff, Francois & von Sachs, Rainer & Sansonnet, Laure, 2015. "Time-frequency analysis of locally stationary Hawkes processes," LIDAM Discussion Papers ISBA 2015011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Koo, Bonsoo & Linton, Oliver, 2010. "Semiparametric estimation of locally stationary diffusion models," LSE Research Online Documents on Economics 58186, London School of Economics and Political Science, LSE Library.
    5. Alessandro Casini & Pierre Perron, 2021. "Change-Point Analysis of Time Series with Evolutionary Spectra," Papers 2106.02031, arXiv.org, revised Aug 2024.
    6. Michael Vogt, 2012. "Nonparametric regression for locally stationary time series," CeMMAP working papers CWP22/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Jentsch, Carsten & Leucht, Anne & Meyer, Marco & Beering, Carina, 2016. "Empirical characteristic functions-based estimation and distance correlation for locally stationary processes," Working Papers 16-15, University of Mannheim, Department of Economics.
    8. Ian Dew-Becker & Charles G. Nathanson, 2017. "Directed Attention and Nonparametric Learning," NBER Working Papers 23917, National Bureau of Economic Research, Inc.
    9. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    10. Frazier, David T. & Koo, Bonsoo, 2021. "Indirect inference for locally stationary models," Journal of Econometrics, Elsevier, vol. 223(1), pages 1-27.
    11. Fryzlewicz, Piotr & Nason, Guy P., 2006. "Haar-Fisz estimation of evolutionary wavelet spectra," LSE Research Online Documents on Economics 25227, London School of Economics and Political Science, LSE Library.
    12. Kenichiro Tamaki, 2009. "Second‐order properties of locally stationary processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 145-166, January.
    13. Beran, Jan, 2007. "On parameter estimation for locally stationary long-memory processes," CoFE Discussion Papers 07/13, University of Konstanz, Center of Finance and Econometrics (CoFE).
    14. Xiangjin B. Chen & Jiti Gao & Degui Li & Param Silvapulle, 2013. "Nonparametric Estimation and Parametric Calibration of Time-Varying Coefficient Realized Volatility Models," Monash Econometrics and Business Statistics Working Papers 21/13, Monash University, Department of Econometrics and Business Statistics.
    15. Fuentes, Montserrat, 2005. "A formal test for nonstationarity of spatial stochastic processes," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 30-54, September.
    16. Abdelkamel Alj & Christophe Ley & Guy Melard, 2015. "Asymptotic Properties of QML Estimators for VARMA Models with Time-Dependent Coefficients: Part I," Working Papers ECARES ECARES 2015-21, ULB -- Universite Libre de Bruxelles.
    17. David T. Frazier & Bonsoo Koo, 2020. "Indirect Inference for Locally Stationary Models," Monash Econometrics and Business Statistics Working Papers 30/20, Monash University, Department of Econometrics and Business Statistics.
    18. Dahlhaus, Rainer & Neumann, Michael H., 2001. "Locally adaptive fitting of semiparametric models to nonstationary time series," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 277-308, February.
    19. Yongmiao Hong & Tae-Hwy Lee & Yuying Sun & Shouyang Wang & Xinyu Zhang, 2017. "Time-varying Model Averaging," Working Papers 202001, University of California at Riverside, Department of Economics.
    20. Jiti Gao & Bin Peng & Wei Biao Wu & Yayi Yan, 2022. "Time-Varying Multivariate Causal Processes," Monash Econometrics and Business Statistics Working Papers 8/22, Monash University, Department of Econometrics and Business Statistics.
    21. Giurcanu Mihai & Spokoiny Vladimir, 2004. "Confidence estimation of the covariance function of stationary and locally stationary processes," Statistics & Risk Modeling, De Gruyter, vol. 22(4), pages 283-300, April.
    22. Yayi Yan & Jiti Gao & Bin Peng, 2021. "On Time-Varying VAR Models: Estimation, Testing and Impulse Response Analysis," Papers 2111.00450, arXiv.org.
    23. Marcel Aloy & Gilles Dufrenot & Charles Lai-Tong & Anne Peguin-Feissolle, 2012. "A Smooth Transition Long-Memory Model," Working Papers halshs-00793680, HAL.
    24. Gao, Jiti & Peng, Bin & Wu, Wei Biao & Yan, Yayi, 2024. "Time-varying multivariate causal processes," Journal of Econometrics, Elsevier, vol. 240(1).
    25. Jozef Barunik & Lukas Vacha, 2023. "The Dynamic Persistence of Economic Shocks," Papers 2306.01511, arXiv.org.
    26. Mykola Babiak & Jozef Barunik, 2021. "Currency Network Risk," Papers 2101.09738, arXiv.org, revised Jul 2021.
    27. Jozef Barunik & Michael Ellington, 2020. "Persistence in Financial Connectedness and Systemic Risk," Papers 2007.07842, arXiv.org, revised Nov 2023.
    28. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    29. Kawka, Rafael, 2022. "Convergence of spectral density estimators in the locally stationary framework," Econometrics and Statistics, Elsevier, vol. 24(C), pages 94-115.
    30. Jiti Gao & Bin Peng & Yayi Yan, 2023. "Time-Varying Vector Error-Correction Models: Estimation and Inference," Monash Econometrics and Business Statistics Working Papers 11/23, Monash University, Department of Econometrics and Business Statistics.
    31. Bibi, Abdelouahab, 2005. "A note on the stability and causality of general time-dependent bilinear models," Statistics & Probability Letters, Elsevier, vol. 73(2), pages 131-138, June.
    32. Last, Michael & Shumway, Robert, 2008. "Detecting abrupt changes in a piecewise locally stationary time series," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 191-214, February.
    33. Arif Dowla & Efstathios Paparoditis & Dimitris Politis, 2013. "Local block bootstrap inference for trending time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 733-764, August.
    34. Krampe, J. & Kreiss, J.-P. & Paparoditis, E., 2015. "Hybrid wild bootstrap for nonparametric trend estimation in locally stationary time series," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 54-63.
    35. Junichi Hirukawa & Sangyeol Lee, 2021. "Asymptotic properties of mildly explosive processes with locally stationary disturbance," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(4), pages 511-534, May.
    36. Inder Tecuapetla-Gómez & Michael Nussbaum, 2012. "On large deviations in testing simple hypotheses for locally stationary Gaussian processes," Statistical Inference for Stochastic Processes, Springer, vol. 15(3), pages 225-239, October.
    37. Junichi Hirukawa, 2017. "Time series regression models with locally stationary disturbance," Statistical Inference for Stochastic Processes, Springer, vol. 20(3), pages 329-346, October.
    38. Yayi Yan & Jiti Gao & Bin peng, 2020. "A Class of Time-Varying Vector Moving Average (infinity) Models," Monash Econometrics and Business Statistics Working Papers 39/20, Monash University, Department of Econometrics and Business Statistics.
    39. Jozef Barunik & Michael Ellington, 2020. "Dynamic Network Risk," Papers 2006.04639, arXiv.org, revised Jul 2020.
    40. Martin J. Lenardon & Anna Amirdjanova, 2006. "Interaction between stock indices via changepoint analysis," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 22(5‐6), pages 573-586, September.
    41. Jozef Barunik & Mattia Bevilacqua & Robert Faff, 2021. "Dynamic industry uncertainty networks and the business cycle," Papers 2101.06957, arXiv.org, revised Mar 2021.
    42. Alquier Pierre & Doukhan Paul & Fan Xiequan, 2019. "Exponential inequalities for nonstationary Markov chains," Dependence Modeling, De Gruyter, vol. 7(1), pages 150-168, January.
    43. Piotr Fryzlewicz & Sébastien Bellegem & Rainer Sachs, 2003. "Forecasting non-stationary time series by wavelet process modelling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 737-764, December.
    44. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    45. Hafner, Christian & Reznikova, Olga, 2010. "Efficient estimation of a semiparametric dynamic copula model," LIDAM Reprints ISBA 2010033, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    46. Joseph Guinness & Michael L. Stein, 2013. "Transformation to approximate independence for locally stationary Gaussian processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 574-590, September.
    47. Ferreira, Guillermo & Rodríguez, Alejandro & Lagos, Bernardo, 2013. "Kalman filter estimation for a regression model with locally stationary errors," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 52-69.
    48. Kenji Sakiyama & Masanobu Taniguchi, 2003. "Testing Composite Hypotheses for Locally Stationary Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 483-504, July.
    49. Fu, Zhonghao & Hong, Yongmiao, 2019. "A model-free consistent test for structural change in regression possibly with endogeneity," Journal of Econometrics, Elsevier, vol. 211(1), pages 206-242.
    50. Roueff, François & von Sachs, Rainer, 2011. "Locally stationary long memory estimation," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 813-844, April.
    51. Yayi Yan & Jiti Gao & Bin Peng, 2020. "A Class of Time-Varying Vector Moving Average Models: Nonparametric Kernel Estimation and Application," Papers 2010.01492, arXiv.org.
    52. Fryzlewicz, Piotr & Ombao, Hernando, 2009. "Consistent classification of non-stationary time series using stochastic wavelet representations," LSE Research Online Documents on Economics 25162, London School of Economics and Political Science, LSE Library.
    53. Kley, Tobias & Preuss, Philip & Fryzlewicz, Piotr, 2019. "Predictive, finite-sample model choice for time series under stationarity and non-stationarity," LSE Research Online Documents on Economics 101748, London School of Economics and Political Science, LSE Library.
    54. Jiao, Hongzan & Huang, Shibiao & Zhou, Yu, 2023. "Understanding the land use function of station areas based on spatiotemporal similarity in rail transit ridership: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 109(C).
    55. Stefan Birr & Holger Dette & Marc Hallin & Tobias Kley & Stanislav Volgushev, 2016. "On Wigner-Ville Spectra and the Unicity of Time-Varying Quantile-Based Spectral Densities," Working Papers ECARES ECARES 2016-38, ULB -- Universite Libre de Bruxelles.
    56. Bardet, Jean-Marc & Doukhan, Paul & Wintenberger, Olivier, 2022. "Contrast estimation of time-varying infinite memory processes," Stochastic Processes and their Applications, Elsevier, vol. 152(C), pages 32-85.
    57. VAN BELLEGEM, Sébastien, 2011. "Locally stationary volatility modelling," LIDAM Discussion Papers CORE 2011041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    58. Yayi Yan & Jiti Gao & Bin Peng, 2021. "On Time-Varying VAR models: Estimation, Testing and Impulse Response Analysis," Monash Econometrics and Business Statistics Working Papers 17/21, Monash University, Department of Econometrics and Business Statistics.
    59. Yousuf, Kashif & Ng, Serena, 2021. "Boosting high dimensional predictive regressions with time varying parameters," Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
    60. Mykola Babiak & Jozef Barunik, 2021. "Uncertainty Network Risk and Currency Returns," CERGE-EI Working Papers wp687, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    61. Shumway, Robert H., 2003. "Time-frequency clustering and discriminant analysis," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 307-314, July.
    62. Guillermo Ferreira & Jorge Mateu & Jose A. Vilar & Joel Muñoz, 2021. "Bootstrapping regression models with locally stationary disturbances," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 341-363, June.
    63. Roueff, François & von Sachs, Rainer & Sansonnet, Laure, 2016. "Locally stationary Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1710-1743.
    64. van Delft, Anne & Eichler, Michael, 2017. "Locally Stationary Functional Time Series," LIDAM Discussion Papers ISBA 2017023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    65. Philip Preuss & Mathias Vetter & Holger Dette, 2013. "Testing Semiparametric Hypotheses in Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 417-437, September.
    66. Yayi Yan & Jiti Gao & Bin Peng, 2021. "Asymptotics for Time-Varying Vector MA(∞) Processes," Monash Econometrics and Business Statistics Working Papers 22/21, Monash University, Department of Econometrics and Business Statistics.

  11. Dahlhaus, R. & Pötscher, B. M., 1989. "Convergence results for maximum likelihood type estimators in multivariable ARMA models II," Journal of Multivariate Analysis, Elsevier, vol. 30(2), pages 241-244, August.

    Cited by:

    1. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    2. Vicky Fasen-Hartmann & Celeste Mayer, 2022. "Whittle estimation for continuous-time stationary state space models with finite second moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 233-270, April.
    3. Findley, David F. & Potscher, Benedikt M. & Wei, Ching-Zong, 2004. "Modeling of time series arrays by multistep prediction or likelihood methods," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 151-187.
    4. Bühlmann, Peter, 1995. "Moving-average representation of autoregressive approximations," Stochastic Processes and their Applications, Elsevier, vol. 60(2), pages 331-342, December.

  12. Dahlhaus, Rainer, 1988. "Empirical spectral processes and their applications to time series analysis," Stochastic Processes and their Applications, Elsevier, vol. 30(1), pages 69-83, November.

    Cited by:

    1. Can, S.U. & Mikosch, T. & Samorodnitsky, G., 2010. "Weak Convergence of the function-indexed integrated periodogram for infinite variance processes," Other publications TiSEM 3be90f1b-2f53-4987-b46e-c, Tilburg University, School of Economics and Management.
    2. Ruprecht Puchstein & Philip Preuß, 2016. "Testing for Stationarity in Multivariate Locally Stationary Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 3-29, January.
    3. Kokoszka, Piotr & Mikosch, Thomas, 2000. "The periodogram at the Fourier frequencies," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 49-79, March.
    4. Damek, Ewa & Mikosch, Thomas & Zhao, Yuwei & Zienkiewicz, Jacek, 2023. "Whittle estimation based on the extremal spectral density of a heavy-tailed random field," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 232-267.
    5. Fasen-Hartmann, Vicky & Mayer, Celeste, 2023. "Empirical spectral processes for stationary state space models," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 319-354.
    6. Vicky Fasen-Hartmann & Celeste Mayer, 2022. "Whittle estimation for continuous-time stationary state space models with finite second moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 233-270, April.
    7. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    8. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.
    9. Mikosch, Thomas & Zhao, Yuwei, 2015. "The integrated periodogram of a dependent extremal event sequence," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3126-3169.
    10. Kokoszka, P. & Mikosch, T., 1997. "The integrated periodogram for long-memory processes with finite or infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 66(1), pages 55-78, February.
    11. Takayuki Shiohama & Masanobu Taniguchi, 2001. "Sequential Estimation for a Functional of the Spectral Density of a Gaussian Stationary Process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 142-158, March.
    12. Jean‐Marc Bardet & Paul Doukhan & José Rafael León, 2008. "Uniform limit theorems for the integrated periodogram of weakly dependent time series and their applications to Whittle's estimate," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 906-945, September.
    13. Mikosch, T. & Norvaisa, R., 1997. "Uniform convergence of the empirical spectral distribution function," Stochastic Processes and their Applications, Elsevier, vol. 70(1), pages 85-114, October.
    14. Polonik, Wolfgang, 1997. "Minimum volume sets and generalized quantile processes," Stochastic Processes and their Applications, Elsevier, vol. 69(1), pages 1-24, July.

  13. Dahlhaus, Rainer, 1985. "Asymptotic normality of spectral estimates," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 412-431, June.

    Cited by:

    1. Rainer Sachs, 1994. "Estimating non-linear functions of the spectral density, using a data-taper," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 453-474, September.
    2. Daniel Janas & Rainer von Sachs, 1995. "Consistency For Non‐Linear Functions Of The Periodogram Of Tapered Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(6), pages 585-606, November.
    3. Peter M Robinson & Carlos Velasco, 2000. "Whittle Pseudo-Maximum Likelihood Estimation for Nonstationary Time Series - (Now published in Journal of the American Statistical Association, 95, (2000), pp.1229-1243.)," STICERD - Econometrics Paper Series 391, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Jentsch, Carsten & Pauly, Markus, 2012. "A note on using periodogram-based distances for comparing spectral densities," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 158-164.
    5. Haihan Yu & Mark S Kaiser & Daniel J Nordman, 2023. "A subsampling perspective for extending the validity of state-of-the-art bootstraps in the frequency domain," Biometrika, Biometrika Trust, vol. 110(4), pages 1099-1115.
    6. Maria Fragkeskou & Efstathios Paparoditis∗, 2016. "Inference for the Fourth-Order Innovation Cumulant in Linear Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(2), pages 240-266, March.
    7. Peter Brockwell & Jens-Peter Kreiss & Tobias Niebuhr, 2014. "Bootstrapping continuous-time autoregressive processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 75-92, February.
    8. Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
    9. Guo, Hongwen & Lim, Chae Young & Meerschaert, Mark M., 2009. "Local Whittle estimator for anisotropic random fields," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 993-1028, May.
    10. McElroy, Tucker & Politis, Dimitris, 2013. "Spectral Density and Spectral Distribution Inference for Long Memory Time Series via Fixed-b Asymptotics," University of California at San Diego, Economics Working Paper Series qt6164c110, Department of Economics, UC San Diego.
    11. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.
    12. Kokoszka, P. & Mikosch, T., 1997. "The integrated periodogram for long-memory processes with finite or infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 66(1), pages 55-78, February.
    13. Jentsch, Carsten & Kreiss, Jens-Peter, 2010. "The multiple hybrid bootstrap -- Resampling multivariate linear processes," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2320-2345, November.
    14. Rademacher, Daniel & Kreiß, Jens-Peter & Paparoditis, Efstathios, 2024. "Asymptotic normality of spectral means of Hilbert space valued random processes," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    15. Tobias Niebuhr & Jens-Peter Kreiss, 2014. "Asymptotics for Autocovariances and Integrated Periodograms for Linear Processes Observed at Lower Frequencies," International Statistical Review, International Statistical Institute, vol. 82(1), pages 123-140, April.
    16. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.

  14. Rainer Dahlhaus, 1983. "Spectral Analysis With Tapered Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 163-175, May.

    Cited by:

    1. Rainer Sachs, 1994. "Estimating non-linear functions of the spectral density, using a data-taper," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 453-474, September.
    2. Daniel Janas & Rainer von Sachs, 1995. "Consistency For Non‐Linear Functions Of The Periodogram Of Tapered Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(6), pages 585-606, November.
    3. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    4. Eichler, Michael, 2008. "Testing nonparametric and semiparametric hypotheses in vector stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 968-1009, May.
    5. Kakizawa, Yoshihide, 2007. "Moderate deviations for quadratic forms in Gaussian stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 992-1017, May.
    6. Velasco, Carlos & Robinson, Peter M., 2001. "Edgeworth expansions for spectral density estimates and studentized sample mean," LSE Research Online Documents on Economics 315, London School of Economics and Political Science, LSE Library.
    7. Sourav Das & Suhasini Subba Rao & Junho Yang, 2021. "Spectral methods for small sample time series: A complete periodogram approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 597-621, September.
    8. McElroy, Tucker & Politis, Dimitris, 2013. "Spectral Density and Spectral Distribution Inference for Long Memory Time Series via Fixed-b Asymptotics," University of California at San Diego, Economics Working Paper Series qt6164c110, Department of Economics, UC San Diego.
    9. Piotr Fryzlewicz & Guy P. Nason & Rainer Von Sachs, 2008. "A wavelet‐Fisz approach to spectrum estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 868-880, September.
    10. Jin, Lei, 2011. "A data-driven test to compare two or multiple time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2183-2196, June.
    11. Fryzlewicz, Piotr & Nason, Guy P. & von Sachs, Rainer, 2008. "A wavelet-Fisz approach to spectrum estimation," LSE Research Online Documents on Economics 25186, London School of Economics and Political Science, LSE Library.
    12. Peter M Robinson & Carlos Velasco, 2000. "Edgeworth Expansions for Spectral Density Estimates and Studentized Sample Mean - (Now published in Economic Theory, 17 (2001), pp.497-539," STICERD - Econometrics Paper Series 390, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    13. Yoshihiro Yajima & Yasumasa Matsuda, 2023. "Gaussian semiparametric estimation Gaussian semiparametric estimation of two-dimensional intrinsically stationary random fields," DSSR Discussion Papers 136, Graduate School of Economics and Management, Tohoku University.
    14. Vetter, Mathias, 2014. "Inference on the Lévy measure in case of noisy observations," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 125-133.
    15. Arthur P. Guillaumin & Adam M. Sykulski & Sofia C. Olhede & Frederik J. Simons, 2022. "The Debiased Spatial Whittle likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1526-1557, September.
    16. van Delft, Anne & Eichler, Michael, 2017. "Locally Stationary Functional Time Series," LIDAM Discussion Papers ISBA 2017023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Evangelos E. Ioannidis, 2022. "A new non‐parametric cross‐spectrum estimator," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(5), pages 808-827, September.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.