Moderate deviations for quadratic forms in Gaussian stationary processes
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bercu, B. & Gamboa, F. & Rouault, A., 1997. "Large deviations for quadratic forms of stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 71(1), pages 75-90, October.
- Velasco, Carlos & Robinson, Peter M., 2001.
"Edgeworth Expansions For Spectral Density Estimates And Studentized Sample Mean,"
Econometric Theory, Cambridge University Press, vol. 17(3), pages 497-539, June.
- Robinson, Peter M. & Velasco, Carlos, 2000. "Edgeworth expansions for spectral density estimates and studentized sample mean," LSE Research Online Documents on Economics 2148, London School of Economics and Political Science, LSE Library.
- Velasco, Carlos & Robinson, Peter M., 2001. "Edgeworth expansions for spectral density estimates and studentized sample mean," LSE Research Online Documents on Economics 315, London School of Economics and Political Science, LSE Library.
- Taniguchi, Masanobu & van Garderen, Kees Jan & Puri, Madan L., 2003. "Higher Order Asymptotic Theory For Minimum Contrast Estimators Of Spectral Parameters Of Stationary Processes," Econometric Theory, Cambridge University Press, vol. 19(6), pages 984-1007, December.
- Djamal Louani, 1998. "Large Deviations Limit Theorems for the Kernel Density Estimator," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 25(1), pages 243-253, March.
- Yoshihide Kakizawa, 2006. "Bernstein polynomial estimation of a spectral density," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 253-287, March.
- Daniel Janas, 1994. "Edgeworth expansions for spectral mean estimates with applications to Whittle estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 667-682, December.
- Zani, Marguerite, 2002. "Large Deviations for Quadratic Forms of Locally Stationary Processes," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 205-228, May.
- Rainer Dahlhaus, 1983. "Spectral Analysis With Tapered Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 163-175, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Daniel Janas & Rainer von Sachs, 1995. "Consistency For Non‐Linear Functions Of The Periodogram Of Tapered Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(6), pages 585-606, November.
- Peter M Robinson & Carlos Velasco, 2000. "Edgeworth Expansions for Spectral Density Estimates and Studentized Sample Mean - (Now published in Economic Theory, 17 (2001), pp.497-539," STICERD - Econometrics Paper Series 390, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- McElroy, Tucker S. & Politis, Dimitris N., 2014.
"Spectral density and spectral distribution inference for long memory time series via fixed-b asymptotics,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 211-225.
- McElroy, Tucker & Politis, Dimitris, 2013. "Spectral Density and Spectral Distribution Inference for Long Memory Time Series via Fixed-b Asymptotics," University of California at San Diego, Economics Working Paper Series qt6164c110, Department of Economics, UC San Diego.
- Velasco, Carlos & Robinson, Peter M., 2001.
"Edgeworth Expansions For Spectral Density Estimates And Studentized Sample Mean,"
Econometric Theory, Cambridge University Press, vol. 17(3), pages 497-539, June.
- Robinson, Peter M. & Velasco, Carlos, 2000. "Edgeworth expansions for spectral density estimates and studentized sample mean," LSE Research Online Documents on Economics 2148, London School of Economics and Political Science, LSE Library.
- Velasco, Carlos & Robinson, Peter M., 2001. "Edgeworth expansions for spectral density estimates and studentized sample mean," LSE Research Online Documents on Economics 315, London School of Economics and Political Science, LSE Library.
- Tamaki, Kenichiro, 2007. "Second order optimality for estimators in time series regression models," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 638-659, March.
- Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
- Osmoukhina, Anna V., 2001. "Large deviations probabilities for a test of symmetry based on kernel density estimator," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 363-371, October.
- Cyrille Joutard, 2013. "Strong large deviations for arbitrary sequences of random variables," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 49-67, February.
- Sun, Yixiao X & Phillips, Peter C. B. & Jin, Sainan, 2005. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing∗," University of California at San Diego, Economics Working Paper Series qt16b3j2hd, Department of Economics, UC San Diego.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2021. "Fast and Robust Online Inference with Stochastic Gradient Descent via Random Scaling," Papers 2106.03156, arXiv.org, revised Oct 2021.
- Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
- Kakizawa, Yoshihide, 2000. "On Bahadur asymptotic efficiency of the maximum likelihood and quasi-maximum likelihood estimators in Gaussian stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 85(1), pages 29-44, January.
- Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023.
"Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings,"
Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.
- Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2021. "Simultaneous Bandwidths Determination for DK-HAC Estimators and Long-Run Variance Estimation in Nonparametric Settings," Papers 2103.00060, arXiv.org.
- Liudas Giraitis & Peter M Robinson, 2002. "Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory," STICERD - Econometrics Paper Series 438, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010.
"Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data,"
Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.
- BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen VK & TAAMOUTI, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for alpha-mixing data," LIDAM Reprints CORE 2302, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Jin Lee, 2012. "Nonparametric Testing for Long-Run Neutrality with Applications to US Money and Output Data," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 183-202, August.
- Del Brio, Esther B. & Perote, Javier, 2012. "Gram–Charlier densities: Maximum likelihood versus the method of moments," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 531-537.
- Giraitis, L. & Robinson, P.M., 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
- Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
- Miao, Yu & Yin, Qing, 2024. "Cramér’s moderate deviations for the LS estimator of the autoregressive processes in the neighborhood of the unit root," Statistics & Probability Letters, Elsevier, vol. 209(C).
More about this item
Keywords
Moderate deviations Gaussian stationary process Spectral density Quadratic forms Toeplitz matrix Cumulative periodogram Kernel spectral density estimator;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:5:p:992-1017. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.