IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v43y2022i5p808-827.html
   My bibliography  Save this article

A new non‐parametric cross‐spectrum estimator

Author

Listed:
  • Evangelos E. Ioannidis

Abstract

A new non‐parametric estimator of the cross‐spectrum of a bivariate stationary time series is proposed, which is non‐quadratic in the observations. This estimator is an extension of the Capon‐estimator of the spectrum of a univariate time series. The proposed estimator is designed so as to cope with the leakage effect induced by strong peaks of the marginal spectra by utilizing adaptive windowing. We study the asymptotic bias and covariance structure of the proposed estimator and prove a central limit theorem for its distribution. We also obtain a result of independent importance for the consistency rate of the cross‐covariance matrix of the two series. The performance of the estimator in comparison to more traditional ones is demonstrated in a simulation study under a model exhibiting extreme characteristics, such as strong peaks in its marginal spectra. Finally, the estimator is used to judge the fit of a VAR(p) model in a real data example.

Suggested Citation

  • Evangelos E. Ioannidis, 2022. "A new non‐parametric cross‐spectrum estimator," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(5), pages 808-827, September.
  • Handle: RePEc:bla:jtsera:v:43:y:2022:i:5:p:808-827
    DOI: 10.1111/jtsa.12639
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12639
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chau, Van Vinh & von Sachs, Rainer, 2017. "Positive-Definite Multivariate Spectral Estimation: A Geometric Wavelet Approach," LIDAM Discussion Papers ISBA 2017002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
    3. Joris Chau & Rainer von Sachs, 2021. "Intrinsic Wavelet Regression for Curves of Hermitian Positive Definite Matrices," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 819-832, April.
    4. Ming Dai, 2004. "Multivariate spectral analysis using Cholesky decomposition," Biometrika, Biometrika Trust, vol. 91(3), pages 629-643, September.
    5. Robert T. Krafty & William O. Collinge, 2013. "Penalized multivariate Whittle likelihood for power spectrum estimation," Biometrika, Biometrika Trust, vol. 100(2), pages 447-458.
    6. T. Subba Rao & M. M. Gabr, 1989. "The Estimation Of Spectrum, Inverse Spectrum And Inverse Autocovariances Of A Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(2), pages 183-202, March.
    7. Rainer Dahlhaus, 1983. "Spectral Analysis With Tapered Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 163-175, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fiecas, Mark & von Sachs, Rainer, 2013. "Data-driven Shrinkage of the Spectral Density Matrix of a High-dimensional Time Series," LIDAM Discussion Papers ISBA 2013044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Zhang, Shibin, 2016. "Adaptive spectral estimation for nonstationary multivariate time series," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 330-349.
    3. Hu, Zhixiong & Prado, Raquel, 2023. "Fast Bayesian inference on spectral analysis of multivariate stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    4. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Chau, Van Vinh & von Sachs, Rainer, 2017. "Positive-Definite Multivariate Spectral Estimation: A Geometric Wavelet Approach," LIDAM Discussion Papers ISBA 2017002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Robert T. Krafty & Ori Rosen & David S. Stoffer & Daniel J. Buysse & Martica H. Hall, 2017. "Conditional Spectral Analysis of Replicated Multiple Time Series With Application to Nocturnal Physiology," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1405-1416, October.
    7. Chau, Van Vinh & Ombao, Hernando & von Sachs, Rainer, 2017. "Data depth and rank-based tests for covariance and spectral density matrices," LIDAM Discussion Papers ISBA 2017019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Maurizio Daniele & Winfried Pohlmeier & Aygul Zagidullina, 2018. "Sparse Approximate Factor Estimation for High-Dimensional Covariance Matrices," Working Paper Series of the Department of Economics, University of Konstanz 2018-07, Department of Economics, University of Konstanz.
    9. Wang, Fangfang, 2014. "Optimal design of Fourier estimator in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 708-722.
    10. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
    11. Sourav Das & Suhasini Subba Rao & Junho Yang, 2021. "Spectral methods for small sample time series: A complete periodogram approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 597-621, September.
    12. Evan L. Reynolds & Brian C. Callaghan & Michael Gaies & Mousumi Banerjee, 2023. "Regression Trees and Ensemble for Multivariate Outcomes," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 77-109, May.
    13. Fiecas, Mark & von Sachs, Rainer, 2012. "Spectral density shrinkage for high-dimensional time series," LIDAM Discussion Papers ISBA 2012037, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Kashlak, Adam B., 2021. "Non-asymptotic error controlled sparse high dimensional precision matrix estimation," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    15. Huangdi Yi & Qingzhao Zhang & Cunjie Lin & Shuangge Ma, 2022. "Information‐incorporated Gaussian graphical model for gene expression data," Biometrics, The International Biometric Society, vol. 78(2), pages 512-523, June.
    16. Zhou Tang & Zhangsheng Yu & Cheng Wang, 2020. "A fast iterative algorithm for high-dimensional differential network," Computational Statistics, Springer, vol. 35(1), pages 95-109, March.
    17. McElroy, Tucker S. & Politis, Dimitris N., 2014. "Spectral density and spectral distribution inference for long memory time series via fixed-b asymptotics," Journal of Econometrics, Elsevier, vol. 182(1), pages 211-225.
    18. Shibin Zhang, 2022. "Automatic estimation of spatial spectra via smoothing splines," Computational Statistics, Springer, vol. 37(2), pages 565-590, April.
    19. Kim, Seungkyu & Park, Seongoh & Lim, Johan & Lee, Sang Han, 2023. "Robust tests for scatter separability beyond Gaussianity," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    20. Yan Zhang & Jiyuan Tao & Zhixiang Yin & Guoqiang Wang, 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-15, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:43:y:2022:i:5:p:808-827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.