IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v15y2023i2d10.1007_s12469-022-00310-7.html
   My bibliography  Save this article

SentiHawkes: a sentiment-aware Hawkes point process to model service quality of public transport using Twitter data

Author

Listed:
  • Mohammad Masoud Rahimi

    (The University of Melbourne)

  • Elham Naghizade

    (RMIT University)

  • Mark Stevenson

    (The University of Melbourne
    The University of Melbourne)

  • Stephan Winter

    (The University of Melbourne)

Abstract

Responsive management of public transport nodes relies on constant monitoring of service quality. Social media content provides a unique opportunity to detect and monitor events impacting service quality in these nodes, as well as predicting future occurrences of such events. However, the confined geographic area of transport nodes exacerbates the sparsity of available feeds, raising two major challenges: limited observations—leading to biased models—and the asynchronous nature of observations—impeding the detection of causal patterns. Thus, this paper proposes a framework based on a multivariate Hawkes point process and sentiment analysis. The multivariate Hawkes point process allows effective modelling of events without making them discrete, hence it is less affected by data sparsity compared to time series models while enabling the prediction of how certain events can trigger future events. Besides, the extracted sentiments from social media feeds provide additional knowledge about passengers’ perception and thus, are used in our approach to strengthening the model. Experiments on a real-world dataset demonstrate the effectiveness of the model in identifying causal relations over the public transport nodes. They also show the efficacy of the proposed solution in predicting events over the limited context compared to state-of-the-art approaches.

Suggested Citation

  • Mohammad Masoud Rahimi & Elham Naghizade & Mark Stevenson & Stephan Winter, 2023. "SentiHawkes: a sentiment-aware Hawkes point process to model service quality of public transport using Twitter data," Public Transport, Springer, vol. 15(2), pages 343-376, June.
  • Handle: RePEc:spr:pubtra:v:15:y:2023:i:2:d:10.1007_s12469-022-00310-7
    DOI: 10.1007/s12469-022-00310-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-022-00310-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-022-00310-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takahiro Omi & Yoshito Hirata & Kazuyuki Aihara, 2017. "Hawkes process model with a time-dependent background rate and its application to high-frequency financial data," Papers 1702.04443, arXiv.org, revised Jul 2017.
    2. Yao, Can-Zhong & Lin, Qing-Wen & Lin, Ji-Nan, 2016. "A study of industrial electricity consumption based on partial Granger causality network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 629-646.
    3. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    4. Mike Thelwall & Kevan Buckley & Georgios Paltoglou, 2011. "Sentiment in Twitter events," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(2), pages 406-418, February.
    5. Cox, Tom & Houdmont, Jonathan & Griffiths, Amanda, 2006. "Rail passenger crowding, stress, health and safety in Britain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(3), pages 244-258, March.
    6. Tata Subba Rao & Granville Tunnicliffe Wilson & Michael Eichler & Rainer Dahlhaus & Johannes Dueck, 2017. "Graphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 225-242, March.
    7. Jiwattanakulpaisarn, Piyapong & Noland, Robert B. & Graham, Daniel J., 2010. "Causal linkages between highways and sector-level employment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 265-280, May.
    8. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    9. Prasanta K. Sahu & Gajanand Sharma & Anirban Guharoy, 2018. "Commuter travel cost estimation at different levels of crowding in a suburban rail system: a case study of Mumbai," Public Transport, Springer, vol. 10(3), pages 379-398, December.
    10. Du, Wen-Bo & Zhang, Ming-Yuan & Zhang, Yu & Cao, Xian-Bin & Zhang, Jun, 2018. "Delay causality network in air transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 466-476.
    11. Pacheco, Ricardo Rodrigues & Fernandes, Elton, 2017. "International air passenger traffic, trade openness and exchange rate in Brazil: A Granger causality test," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 22-29.
    12. Mike Thelwall & Kevan Buckley & Georgios Paltoglou, 2011. "Sentiment in Twitter events," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(2), pages 406-418, February.
    13. N. Nima Haghighi & Xiaoyue Cathy Liu & Ran Wei & Wenwen Li & Hu Shao, 2018. "Using Twitter data for transit performance assessment: a framework for evaluating transit riders’ opinions about quality of service," Public Transport, Springer, vol. 10(2), pages 363-377, August.
    14. Alan G. Hawkes, 2018. "Hawkes processes and their applications to finance: a review," Quantitative Finance, Taylor & Francis Journals, vol. 18(2), pages 193-198, February.
    15. Yetkiner, Hakan & Beyzatlar, Mehmet Aldonat, 2020. "The Granger-causality between wealth and transportation: A panel data approach," Transport Policy, Elsevier, vol. 97(C), pages 19-25.
    16. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Post-Print hal-01313995, HAL.
    17. Liping Ge & Malek Sarhani & Stefan Voß & Lin Xie, 2021. "Review of Transit Data Sources: Potentials, Challenges and Complementarity," Sustainability, MDPI, vol. 13(20), pages 1-37, October.
    18. Vanessa Didelez, 2008. "Graphical models for marked point processes based on local independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 245-264, February.
    19. Kieran Kalair & Colm Connaughton & Pierfrancesco Alaimo Di Loro, 2021. "A non‐parametric Hawkes process model of primary and secondary accidents on a UK smart motorway," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 80-97, January.
    20. Amirali Soltanpour & Mahmoud Mesbah & Meeghat Habibian, 2020. "Customer satisfaction in urban rail: a study on transferability of structural equation models," Public Transport, Springer, vol. 12(1), pages 123-146, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dibya Nandan Mishra & Rajeev Kumar Panda, 2023. "Decoding customer experiences in rail transport service: application of hybrid sentiment analysis," Public Transport, Springer, vol. 15(1), pages 31-60, March.
    2. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    3. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    4. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    5. Aghabayk, Kayvan & Esmailpour, Javad & Shiwakoti, Nirajan, 2021. "Effects of COVID-19 on rail passengers’ crowding perceptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 186-202.
    6. Tata Subba Rao & Granville Tunnicliffe Wilson & Michael Eichler & Rainer Dahlhaus & Johannes Dueck, 2017. "Graphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 225-242, March.
    7. Buccioli, Alice & Kokholm, Thomas & Nicolosi, Marco, 2019. "Expected shortfall and portfolio management in contagious markets," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 100-115.
    8. Hainaut, Donatien, 2023. "A mutually exciting rough jump diffusion for financial modelling," LIDAM Discussion Papers ISBA 2023011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    10. Huang, Lorick & Khabou, Mahmoud, 2023. "Nonlinear Poisson autoregression and nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 201-241.
    11. Massil Achab & Emmanuel Bacry & Jean-Franc{c}ois Muzy & Marcello Rambaldi, 2017. "Analysis of order book flows using a nonparametric estimation of the branching ratio matrix," Papers 1706.03411, arXiv.org.
    12. Bo Jing & Shenghong Li & Yong Ma, 2020. "Pricing VIX options with volatility clustering," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 928-944, June.
    13. Rayaprolu, Hema & Levinson, David, 2024. "Co-evolution of public transport access and ridership," Journal of Transport Geography, Elsevier, vol. 116(C).
    14. Tianxing Dai & Brian D. Taylor, 2023. "Three’s a crowd? Examining evolving public transit crowding standards amidst the COVID-19 pandemic," Public Transport, Springer, vol. 15(2), pages 321-341, June.
    15. Marcello Rambaldi & Emmanuel Bacry & Jean-Franc{c}ois Muzy, 2018. "Disentangling and quantifying market participant volatility contributions," Papers 1807.07036, arXiv.org.
    16. Thomas Deschatre & Xavier Warin, 2023. "A Common Shock Model for multidimensional electricity intraday price modelling with application to battery valuation," Papers 2307.16619, arXiv.org.
    17. Ma, Jie & Tse, Ying Kei & Wang, Xiaojun & Zhang, Minhao, 2019. "Examining customer perception and behaviour through social media research – An empirical study of the United Airlines overbooking crisis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 192-205.
    18. Ioane Muni Toke & Nakahiro Yoshida, 2020. "Marked point processes and intensity ratios for limit order book modeling," Papers 2001.08442, arXiv.org.
    19. Luis-Millán González & José Devís-Devís & Maite Pellicer-Chenoll & Miquel Pans & Alberto Pardo-Ibañez & Xavier García-Massó & Fernanda Peset & Fernanda Garzón-Farinós & Víctor Pérez-Samaniego, 2021. "The Impact of COVID-19 on Sport in Twitter: A Quantitative and Qualitative Content Analysis," IJERPH, MDPI, vol. 18(9), pages 1-20, April.
    20. Ying Chen & Ulrich Horst & Hoang Hai Tran, 2019. "Portfolio liquidation under transient price impact -- theoretical solution and implementation with 100 NASDAQ stocks," Papers 1912.06426, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:15:y:2023:i:2:d:10.1007_s12469-022-00310-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.