IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v53y2001i1p179-188.html
   My bibliography  Save this article

Web Quantlets for Time Series Analysis

Author

Listed:
  • Wolfgang Härdle
  • Torsten Kleinow
  • Rolf Tschernig

Abstract

Newly developed and advanced methods for nonlinear time series analysis are in general not available in standard software packages. Moreover, their implementation requires substantial time, computing power as well as programming skills. The recent results on lag and bandwidth selection methods for nonlinear autoregressive time series models provide such a scenario. Application of these methods requires enormous computing resources if larger samples are considered. In this paper we suggest a method to provide empirical researchers with a fast access to new methods as well as to powerful computing environments. It is illustrated with a recently suggested nonparametric lag selection procedure based on CAFPE (Corrected Asymptotic Final Prediction Error). Our approach is based on the XploRe quantlet technology. Its worldwide Web usage is made possible by a specific client/server architecture. It allows researchers to use the quantlet computing service without knowing either the statistical computing language or the server location. Quantlets are accessed via standard WWW browsers or via a Java client which works like a standard desktop environment. This architecture allows a flexible scaling of time consuming computations on either client or server. The XploRe quantlet service is helpful in constructing research books and interactive teaching environments as the electronic version of this paper demonstrates.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Wolfgang Härdle & Torsten Kleinow & Rolf Tschernig, 2001. "Web Quantlets for Time Series Analysis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 179-188, March.
  • Handle: RePEc:spr:aistmt:v:53:y:2001:i:1:p:179-188
    DOI: 10.1023/A:1017980807689
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1017980807689
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1017980807689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hardle, W. & Tsybakov, A., 1997. "Local polynomial estimators of the volatility function in nonparametric autoregression," Journal of Econometrics, Elsevier, vol. 81(1), pages 223-242, November.
    2. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Lag Selection for Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(4), pages 457-487, July.
    3. L. Yang & R. Tschernig, 1999. "Multivariate bandwidth selection for local linear regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 793-815.
    4. Dahlhaus, R. & Neumann, M. & Von Sachs, R., 1997. "Nonlinear Wavelet Estimation of Time-Varying Autoregressive Processes," SFB 373 Discussion Papers 1997,34, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ostap Okhrin & Stefan Trück, 2015. "Editorial to the special issue on Applicable semiparametrics of computational statistics," Computational Statistics, Springer, vol. 30(3), pages 641-646, September.
    2. Aydınlı, Gökhan & Härdle, Wolfgang Karl & Neuwirth, E., 2003. "Computational Statistics with Spreadsheets Towards Efficiency, Reproducibility and Security," SFB 373 Discussion Papers 2003,26, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. Aydınlı, Gökhan & Härdle, Wolfgang Karl & Rönz, Bernd, 2003. "E-learning, e-teaching of statistics: A new challenge," SFB 373 Discussion Papers 2003,20, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    4. Rönz, Bernd, 2001. "MM*Stat - a multimedia tool for teaching of statistics," SFB 373 Discussion Papers 2001,85, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    5. Kleinow, Torsten & Lehmann, Heiko, 2002. "Client/server based statistical computing," SFB 373 Discussion Papers 2002,49, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    6. Härdle, Wolfgang & Rönz, Bernd, 2002. "E-learning / e-teaching of statistics: Students' and teachers' views," SFB 373 Discussion Papers 2002,84, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    7. Härdle, Wolfgang & Lehmann, Heiko & Rönz, Bernd, 2001. "MM*STAT: Eine interaktive Einführung in die Welt der Statistik," SFB 373 Discussion Papers 2001,4, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Estimation of Generalized Impulse Response Functions," Econometric Society World Congress 2000 Contributed Papers 1417, Econometric Society.
    2. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, October.
    3. Biqing Cai & Dag Tjøstheim, 2015. "Nonparametric Regression Estimation for Multivariate Null Recurrent Processes," Econometrics, MDPI, vol. 3(2), pages 1-24, April.
    4. Lijian Yang & Wolfgang Hardle & Jens Nielsen, 1999. "Nonparametric Autoregression with Multiplicative Volatility and Additive mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 579-604, September.
    5. Mohamed Chikhi & Claude Diebolt, 2010. "Nonparametric analysis of financial time series by the Kernel methodology," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(5), pages 865-880, August.
    6. CHIKHI, Mohamed, 2017. "Chocs exogènes et non linéarités dans les séries boursières: Application à la modélisation non paramétrique du cours de l'action Orange [Exogenous Shocks and nonlinearity in the stock exchange seri," MPRA Paper 76691, University Library of Munich, Germany, revised 2017.
    7. Chikhi, Mohamed & Terraza, Michel, 2002. "Un essai de prévision non paramétrique de l'action France Télécom [A nonparametric prediction test of the France Telecom stock proces]," MPRA Paper 77268, University Library of Munich, Germany, revised Dec 2003.
    8. Chevallier, Julien, 2011. "Nonparametric modeling of carbon prices," Energy Economics, Elsevier, vol. 33(6), pages 1267-1282.
    9. Hoffmann, Marc, 1999. "On nonparametric estimation in nonlinear AR(1)-models," Statistics & Probability Letters, Elsevier, vol. 44(1), pages 29-45, August.
    10. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    11. Rong Liu & Lijian Yang, 2008. "Kernel estimation of multivariate cumulative distribution function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 661-677.
    12. Offer Lieberman & Peter C. B. Phillips, 2014. "Norming Rates And Limit Theory For Some Time-Varying Coefficient Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 592-623, November.
    13. Ke Yang, 2013. "An Improved Local-linear Estimator For Nonparametric Regression With Autoregressive Errors," Economics Bulletin, AccessEcon, vol. 33(1), pages 19-27.
    14. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
    15. Inés Barbeito & Ricardo Cao & Stefan Sperlich, 2023. "Bandwidth selection for statistical matching and prediction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 418-446, March.
    16. Juan Manuel Julio & Norberto Rodríguez & Héctor Manuel Zárate, 2005. "Estimating the COP Exchange Rate Volatility Smile and the Market Effect of Central Bank Interventions: A CHARN Approach," Borradores de Economia 2605, Banco de la Republica.
    17. Sami MESTIRI, 2022. "Modeling the volatility of Bitcoin returns using Nonparametric GARCH models," Journal of Academic Finance, RED research unit, university of Gabes, Tunisia, vol. 13(1), pages 2-16, June.
    18. Nicoleta Serban, 2008. "Estimating and clustering curves in the presence of heteroscedastic errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 553-571.
    19. Guo, Zheng-Feng & Shintani, Mototsugu, 2011. "Nonparametric lag selection for nonlinear additive autoregressive models," Economics Letters, Elsevier, vol. 111(2), pages 131-134, May.
    20. Heather L. R. Tierney, 2019. "Forecasting with the Nonparametric Exclusion-from-Core Inflation Persistence Model Using Real-Time Data," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 25(1), pages 39-63, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:53:y:2001:i:1:p:179-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.