IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v25y2009i05p1433-1445_09.html
   My bibliography  Save this article

Uniform Convergence Rates Of Kernel Estimators With Heterogeneous Dependent Data

Author

Listed:
  • Kristensen, Dennis

Abstract

The main uniform convergence results of Hansen (2008, Econometric Theory 24, 726–748) are generalized in two directions: Data are allowed to (a) be heterogeneously dependent and (b) depend on a (possibly unbounded) parameter. These results are useful in semiparametric estimation problems involving time-inhomogeneous models and/or sampling of continuous-time processes. The usefulness of these results is demonstrated by two applications: kernel regression estimation of a time-varying AR(1) model and the kernel density estimation of a Markov chain that has not been initialized at its stationary distribution.

Suggested Citation

  • Kristensen, Dennis, 2009. "Uniform Convergence Rates Of Kernel Estimators With Heterogeneous Dependent Data," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1433-1445, October.
  • Handle: RePEc:cup:etheor:v:25:y:2009:i:05:p:1433-1445_09
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466609090744/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Bruce E., 2008. "Uniform Convergence Rates For Kernel Estimation With Dependent Data," Econometric Theory, Cambridge University Press, vol. 24(3), pages 726-748, June.
    2. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    3. Fermanian, Jean-David & Salanié, Bernard, 2004. "A Nonparametric Simulated Maximum Likelihood Estimation Method," Econometric Theory, Cambridge University Press, vol. 20(4), pages 701-734, August.
    4. Li, Qi & Wooldridge, Jeffrey M., 2002. "Semiparametric Estimation Of Partially Linear Models For Dependent Data With Generated Regressors," Econometric Theory, Cambridge University Press, vol. 18(3), pages 625-645, June.
    5. Dahlhaus, R. & Neumann, M. & Von Sachs, R., 1997. "Nonlinear Wavelet Estimation of Time-Varying Autoregressive Processes," SFB 373 Discussion Papers 1997,34, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    6. Orbe, Susan & Ferreira, Eva & Rodriguez-Poo, Juan, 2005. "Nonparametric estimation of time varying parameters under shape restrictions," Journal of Econometrics, Elsevier, vol. 126(1), pages 53-77, May.
    7. Federico M. Bandi & Peter C. B. Phillips, 2003. "Fully Nonparametric Estimation of Scalar Diffusion Models," Econometrica, Econometric Society, vol. 71(1), pages 241-283, January.
    8. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 560-586, June.
    9. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    10. Kristensen, Dennis, 2010. "Nonparametric Filtering Of The Realized Spot Volatility: A Kernel-Based Approach," Econometric Theory, Cambridge University Press, vol. 26(1), pages 60-93, February.
    11. Per Frederiksen & Frank S. Nielsen, 2008. "Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood," CREATES Research Papers 2008-59, Department of Economics and Business Economics, Aarhus University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonsoo Koo & Oliver Linton, 2010. "Semiparametric Estimation of Locally Stationary Diffusion Models," STICERD - Econometrics Paper Series 551, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Kristensen, Dennis, 2010. "Pseudo-maximum likelihood estimation in two classes of semiparametric diffusion models," Journal of Econometrics, Elsevier, vol. 156(2), pages 239-259, June.
    3. Ang, Andrew & Kristensen, Dennis, 2012. "Testing conditional factor models," Journal of Financial Economics, Elsevier, vol. 106(1), pages 132-156.
    4. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    5. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    6. Kristensen, Dennis, 2008. "Estimation of partial differential equations with applications in finance," Journal of Econometrics, Elsevier, vol. 144(2), pages 392-408, June.
    7. Koo, Bonsoo & Linton, Oliver, 2012. "Estimation of semiparametric locally stationary diffusion models," Journal of Econometrics, Elsevier, vol. 170(1), pages 210-233.
    8. Corradi, Valentina & Swanson, Norman R., 2011. "Predictive density construction and accuracy testing with multiple possibly misspecified diffusion models," Journal of Econometrics, Elsevier, vol. 161(2), pages 304-324, April.
    9. Bu, Ruijun & Kim, Jihyun & Wang, Bin, 2023. "Uniform and Lp convergences for nonparametric continuous time regressions with semiparametric applications," Journal of Econometrics, Elsevier, vol. 235(2), pages 1934-1954.
    10. Kristensen, Dennis, 2011. "Semi-nonparametric estimation and misspecification testing of diffusion models," Journal of Econometrics, Elsevier, vol. 164(2), pages 382-403, October.
    11. Dennis Kristensen, 2007. "Nonparametric Estimation and Misspecification Testing of Diffusion Models," CREATES Research Papers 2007-01, Department of Economics and Business Economics, Aarhus University.
    12. Escanciano, Juan Carlos & Jacho-Chávez, David T. & Lewbel, Arthur, 2014. "Uniform convergence of weighted sums of non and semiparametric residuals for estimation and testing," Journal of Econometrics, Elsevier, vol. 178(P3), pages 426-443.
    13. Yayi Yan & Jiti Gao & Bin Peng, 2020. "A Class of Time-Varying Vector Moving Average Models: Nonparametric Kernel Estimation and Application," Papers 2010.01492, arXiv.org.
    14. Yayi Yan & Jiti Gao & Bin peng, 2020. "A Class of Time-Varying Vector Moving Average (infinity) Models," Monash Econometrics and Business Statistics Working Papers 39/20, Monash University, Department of Econometrics and Business Statistics.
    15. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    16. Ruijun Bu & Jihyun Kim & Bin Wang, 2020. "Uniform and Lp Convergences of Nonparametric Estimation for Diffusion Models," Working Papers 202021, University of Liverpool, Department of Economics.
    17. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    18. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    19. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    20. Weichi Wu & Zhou Zhou, 2017. "Nonparametric Inference for Time-Varying Coefficient Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 98-109, January.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:25:y:2009:i:05:p:1433-1445_09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.