IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v043i03.html
   My bibliography  Save this article

LS2W: Implementing the Locally Stationary 2D Wavelet Process Approach in R

Author

Listed:
  • Eckley, Idris A.
  • Nason, Guy P.

Abstract

Locally stationary process representations have recently been proposed and applied to both time series and image analysis applications. This article describes an implementation of the locally stationary two-dimensional wavelet process approach in R. This package permits construction of estimates of spatially localized spectra and localized autocovariance which can be used to characterize structure within images.

Suggested Citation

  • Eckley, Idris A. & Nason, Guy P., 2011. "LS2W: Implementing the Locally Stationary 2D Wavelet Process Approach in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i03).
  • Handle: RePEc:jss:jstsof:v:043:i03
    DOI: http://hdl.handle.net/10.18637/jss.v043.i03
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v043i03/v43i03.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v043i03/LS2W_1.3.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v043i03/v43i03.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v043.i03?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sébastien Van Bellegem & Rainer Dahlhaus, 2006. "Semiparametric estimation by model selection for locally stationary processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(5), pages 721-746, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelkamel Alj & Christophe Ley & Guy Melard, 2015. "Asymptotic Properties of QML Estimators for VARMA Models with Time-Dependent Coefficients: Part I," Working Papers ECARES ECARES 2015-21, ULB -- Universite Libre de Bruxelles.
    2. Cardinali Alessandro & Nason Guy P, 2011. "Costationarity of Locally Stationary Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 2(2), pages 1-35, January.
    3. Beran, Jan, 2007. "On parameter estimation for locally stationary long-memory processes," CoFE Discussion Papers 07/13, University of Konstanz, Center of Finance and Econometrics (CoFE).
    4. Abdelkamel Alj & Rajae Azrak & Christophe Ley & Guy Mélard, 2017. "Asymptotic Properties of QML Estimators for VARMA Models with Time-dependent Coefficients," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 617-635, September.
    5. VAN BELLEGEM, Sébastien, 2011. "Locally stationary volatility modelling," LIDAM Discussion Papers CORE 2011041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Marios Sergides & Efstathios Paparoditis, 2009. "Frequency Domain Tests of Semiparametric Hypotheses for Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 800-821, December.
    7. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    8. Dahlhaus, Rainer, 2009. "Local inference for locally stationary time series based on the empirical spectral measure," Journal of Econometrics, Elsevier, vol. 151(2), pages 101-112, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:043:i03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.