IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v37y2016i2p240-266.html
   My bibliography  Save this article

Inference for the Fourth-Order Innovation Cumulant in Linear Time Series

Author

Listed:
  • Maria Fragkeskou
  • Efstathios Paparoditis∗

Abstract

type="main" xml:id="jtsa12160-abs-0001"> The rescaled fourth-order cumulant of the unobserved innovations of linear time series is an important parameter in statistical inference. This article deals with the problem of estimating this parameter. An existing nonparametric estimator is first discussed, and its asymptotic properties are derived. It is shown how the autocorrelation structure of the underlying process affects the behaviour of the estimator. Based on our findings and on an important invariance property of the parameter of interest with respect to linear filtering, a pre-whitening-based nonparametric estimator of the same parameter is proposed. The estimator is obtained using the filtered time series only; that is, an inversion of the pre-whitening procedure is not required. The asymptotic properties of the new estimator are investigated, and its superiority is established for large classes of stochastic processes. It is shown that for the particular estimation problem considered, pre-whitening can reduce the variance and the bias of the estimator. The finite sample performance of both estimators is investigated by means of simulations. The new estimator allows for a simple modification of the multiplicative frequency domain bootstrap, which extends its considerable range of validity. Furthermore, the problem of testing hypotheses about the rescaled fourth-order cumulant of the unobserved innovations is also considered. In this context, a simple test for Gaussianity is proposed. Some real-life data applications are presented.

Suggested Citation

  • Maria Fragkeskou & Efstathios Paparoditis∗, 2016. "Inference for the Fourth-Order Innovation Cumulant in Linear Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(2), pages 240-266, March.
  • Handle: RePEc:bla:jtsera:v:37:y:2016:i:2:p:240-266
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jtsa.12160
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dahlhaus, Rainer, 1985. "Asymptotic normality of spectral estimates," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 412-431, June.
    2. Jens-peter Kreiss & Efstathios Paparoditis, 2012. "The Hybrid Wild Bootstrap for Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1073-1084, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haihan Yu & Mark S Kaiser & Daniel J Nordman, 2023. "A subsampling perspective for extending the validity of state-of-the-art bootstraps in the frequency domain," Biometrika, Biometrika Trust, vol. 110(4), pages 1099-1115.
    2. Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
    3. Rademacher, Daniel & Kreiß, Jens-Peter & Paparoditis, Efstathios, 2024. "Asymptotic normality of spectral means of Hilbert space valued random processes," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    4. Jentsch, Carsten & Pauly, Markus, 2012. "A note on using periodogram-based distances for comparing spectral densities," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 158-164.
    5. Jentsch, Carsten & Kreiss, Jens-Peter, 2010. "The multiple hybrid bootstrap -- Resampling multivariate linear processes," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2320-2345, November.
    6. Franziska Häfner & Claudia Kirch, 2017. "Moving Fourier Analysis for Locally Stationary Processes with the Bootstrap in View," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 895-922, November.
    7. Daniel Janas & Rainer von Sachs, 1995. "Consistency For Non‐Linear Functions Of The Periodogram Of Tapered Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(6), pages 585-606, November.
    8. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    9. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.
    10. Kokoszka, P. & Mikosch, T., 1997. "The integrated periodogram for long-memory processes with finite or infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 66(1), pages 55-78, February.
    11. McElroy, Tucker S. & Politis, Dimitris N., 2014. "Spectral density and spectral distribution inference for long memory time series via fixed-b asymptotics," Journal of Econometrics, Elsevier, vol. 182(1), pages 211-225.
    12. Tobias Niebuhr & Jens-Peter Kreiss, 2014. "Asymptotics for Autocovariances and Integrated Periodograms for Linear Processes Observed at Lower Frequencies," International Statistical Review, International Statistical Institute, vol. 82(1), pages 123-140, April.
    13. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    14. Rainer Sachs, 1994. "Estimating non-linear functions of the spectral density, using a data-taper," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 453-474, September.
    15. Guo, Hongwen & Lim, Chae Young & Meerschaert, Mark M., 2009. "Local Whittle estimator for anisotropic random fields," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 993-1028, May.
    16. Peter M Robinson & Carlos Velasco, 2000. "Whittle Pseudo-Maximum Likelihood Estimation for Nonstationary Time Series - (Now published in Journal of the American Statistical Association, 95, (2000), pp.1229-1243.)," STICERD - Econometrics Paper Series 391, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    17. Peter Brockwell & Jens-Peter Kreiss & Tobias Niebuhr, 2014. "Bootstrapping continuous-time autoregressive processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 75-92, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:37:y:2016:i:2:p:240-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.