IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v22y2004i4-2004p283-300n3.html
   My bibliography  Save this article

Confidence estimation of the covariance function of stationary and locally stationary processes

Author

Listed:
  • Giurcanu Mihai
  • Spokoiny Vladimir

Abstract

In this note we consider the problem of confidence estimation of the covariance function of a stationary or locally stationary zero mean Gaussian process. The constructed confidence intervals are based on the usual empirical covariance estimate and a special estimate of its variance. The results about coverage probability are stated in a nonasymptotic way and apply for small and moderate sample size under mild conditions on the model. The presented numerical results are in agreement with the theoretical issues and demonstrate applicability of the method.

Suggested Citation

  • Giurcanu Mihai & Spokoiny Vladimir, 2004. "Confidence estimation of the covariance function of stationary and locally stationary processes," Statistics & Risk Modeling, De Gruyter, vol. 22(4), pages 283-300, April.
  • Handle: RePEc:bpj:strimo:v:22:y:2004:i:4/2004:p:283-300:n:3
    DOI: 10.1524/stnd.22.4.283.64315
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/stnd.22.4.283.64315
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/stnd.22.4.283.64315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hernando Ombao & Jonathan Raz & Rainer von Sachs & Wensheng Guo, 2002. "The SLEX Model of a Non-Stationary Random Process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 171-200, March.
    2. Spokoiny, Vladimir, 2002. "Variance Estimation for High-Dimensional Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 111-133, July.
    3. Dahlhaus, R., 1996. "On the Kullback-Leibler information divergence of locally stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 139-168, March.
    4. Sakiyama, Kenji & Taniguchi, Masanobu, 2004. "Discriminant analysis for locally stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 282-300, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fryzlewicz, Piotr & Ombao, Hernando, 2009. "Consistent classification of non-stationary time series using stochastic wavelet representations," LSE Research Online Documents on Economics 25162, London School of Economics and Political Science, LSE Library.
    2. Fryzlewicz, Piotr & Nason, Guy P., 2006. "Haar-Fisz estimation of evolutionary wavelet spectra," LSE Research Online Documents on Economics 25227, London School of Economics and Political Science, LSE Library.
    3. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    4. Philip Preuss & Mathias Vetter & Holger Dette, 2013. "Testing Semiparametric Hypotheses in Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 417-437, September.
    5. Joseph Guinness & Michael L. Stein, 2013. "Transformation to approximate independence for locally stationary Gaussian processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 574-590, September.
    6. Rhys Bidder & Ian Dew-Becker, 2016. "Long-Run Risk Is the Worst-Case Scenario," American Economic Review, American Economic Association, vol. 106(9), pages 2494-2527, September.
    7. Schroeder, Anna Louise & Fryzlewicz, Piotr, 2013. "Adaptive trend estimation in financial time series via multiscale change-point-induced basis recovery," LSE Research Online Documents on Economics 54934, London School of Economics and Political Science, LSE Library.
    8. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    9. Bonsoo Koo & Oliver Linton, 2010. "Semiparametric Estimation of Locally Stationary Diffusion Models," STICERD - Econometrics Paper Series 551, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. Abdelkamel Alj & Christophe Ley & Guy Melard, 2015. "Asymptotic Properties of QML Estimators for VARMA Models with Time-Dependent Coefficients: Part I," Working Papers ECARES ECARES 2015-21, ULB -- Universite Libre de Bruxelles.
    11. David T. Frazier & Bonsoo Koo, 2020. "Indirect Inference for Locally Stationary Models," Monash Econometrics and Business Statistics Working Papers 30/20, Monash University, Department of Econometrics and Business Statistics.
    12. Yayi Yan & Jiti Gao & Bin Peng, 2021. "On Time-Varying VAR Models: Estimation, Testing and Impulse Response Analysis," Papers 2111.00450, arXiv.org.
    13. Aloy Marcel & Dufrénot Gilles & Tong Charles Lai & Peguin-Feissolle Anne, 2013. "A smooth transition long-memory model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 281-296, May.
    14. Borzykh, Dmitriy & Yazykov, Artem, 2019. "The new KS method for a structural break detection in GARCH(1,1) models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 54, pages 90-104.
    15. Baruník, Jozef & Ellington, Michael, 2024. "Persistence in financial connectedness and systemic risk," European Journal of Operational Research, Elsevier, vol. 314(1), pages 393-407.
    16. Zhelin Huang & Ngai Hang Chan, 2020. "Walsh Fourier Transform of Locally Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 312-340, March.
    17. Yousuf, Kashif & Ng, Serena, 2021. "Boosting high dimensional predictive regressions with time varying parameters," Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
    18. Dew-Becker, Ian & Nathanson, Charles G., 2019. "Directed attention and nonparametric learning," Journal of Economic Theory, Elsevier, vol. 181(C), pages 461-496.
    19. Mendez, Guillermo & Lohr, Sharon, 2011. "Estimating residual variance in random forest regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2937-2950, November.
    20. Beran, Jan, 2007. "On parameter estimation for locally stationary long-memory processes," CoFE Discussion Papers 07/13, University of Konstanz, Center of Finance and Econometrics (CoFE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:22:y:2004:i:4/2004:p:283-300:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.