IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v96y2005i1p30-54.html
   My bibliography  Save this article

A formal test for nonstationarity of spatial stochastic processes

Author

Listed:
  • Fuentes, Montserrat

Abstract

Spatial statistics is one of the major methodologies of image analysis, field trials, remote sensing, and environmental statistics. The standard methodology in spatial statistics is essentially based on the assumption of stationary and isotropic random fields. Such assumptions might not hold in large heterogeneous fields. Thus, it is important to understand when stationarity and isotropy are reasonable assumptions. Most of the work that has been done so far to test the nonstationarity of a random process is in one dimension. Unfortunately, there is not much literature of formal procedures to test for stationarity of spatial stochastic processes. In this manuscript, we consider the problem of testing a given spatial process for stationarity and isotropy. The approach is based on a spatial spectral analysis, this means spectral functions which are space dependent. The proposed method consists essentially in testing the homogeneity of a set of spatial spectra evaluated at different locations. In addition to testing stationarity and isotropy, the analysis provides also a method for testing whether the observed process fits a uniformly modulated model, and a test for randomness (white noise). Applications include modeling and testing for nonstationary of air pollution concentrations over different geo-political boundaries.

Suggested Citation

  • Fuentes, Montserrat, 2005. "A formal test for nonstationarity of spatial stochastic processes," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 30-54, September.
  • Handle: RePEc:eee:jmvana:v:96:y:2005:i:1:p:30-54
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00175-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Montserrat Fuentes, 2002. "Spectral methods for nonstationary spatial processes," Biometrika, Biometrika Trust, vol. 89(1), pages 197-210, March.
    2. Dahlhaus, R., 1996. "On the Kullback-Leibler information divergence of locally stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 139-168, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Myoungji Lee & Marc G. Genton & Mikyoung Jun, 2016. "Testing Self-Similarity Through Lamperti Transformations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 426-447, September.
    2. Bowman, Adrian W. & Crujeiras, Rosa M., 2013. "Inference for variograms," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 19-31.
    3. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    4. Soutir Bandyopadhyay & Suhasini Subba Rao, 2017. "A test for stationarity for irregularly spaced spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 95-123, January.
    5. Taheriyoun, Ali Reza, 2012. "Testing the covariance function of stationary Gaussian random fields," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 606-613.
    6. Li, Yang & Zhu, Zhengyuan, 2016. "Modeling nonstationary covariance function with convolution on sphere," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 233-246.
    7. Crujeiras, Rosa M. & Van Keilegom, Ingrid, 2010. "Least squares estimation of nonlinear spatial trends," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 452-465, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    2. Fryzlewicz, Piotr & Nason, Guy P., 2006. "Haar-Fisz estimation of evolutionary wavelet spectra," LSE Research Online Documents on Economics 25227, London School of Economics and Political Science, LSE Library.
    3. Yayi Yan & Jiti Gao & Bin Peng, 2021. "On Time-Varying VAR Models: Estimation, Testing and Impulse Response Analysis," Papers 2111.00450, arXiv.org.
    4. Aloy Marcel & Dufrénot Gilles & Tong Charles Lai & Peguin-Feissolle Anne, 2013. "A smooth transition long-memory model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 281-296, May.
    5. Marcelo Cunha & Dani Gamerman & Montserrat Fuentes & Marina Paez, 2017. "A non-stationary spatial model for temperature interpolation applied to the state of Rio de Janeiro," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 919-939, November.
    6. Baruník, Jozef & Ellington, Michael, 2024. "Persistence in financial connectedness and systemic risk," European Journal of Operational Research, Elsevier, vol. 314(1), pages 393-407.
    7. Dew-Becker, Ian & Nathanson, Charles G., 2019. "Directed attention and nonparametric learning," Journal of Economic Theory, Elsevier, vol. 181(C), pages 461-496.
    8. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    9. Beran, Jan, 2007. "On parameter estimation for locally stationary long-memory processes," CoFE Discussion Papers 07/13, University of Konstanz, Center of Finance and Econometrics (CoFE).
    10. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    11. Arif Dowla & Efstathios Paparoditis & Dimitris Politis, 2013. "Local block bootstrap inference for trending time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 733-764, August.
    12. Roueff, François & von Sachs, Rainer & Sansonnet, Laure, 2016. "Locally stationary Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1710-1743.
    13. Jiti Gao & Bin Peng & Wei Biao Wu & Yayi Yan, 2022. "Time-Varying Multivariate Causal Processes," Monash Econometrics and Business Statistics Working Papers 8/22, Monash University, Department of Econometrics and Business Statistics.
    14. Li, Yang & Zhu, Zhengyuan, 2016. "Modeling nonstationary covariance function with convolution on sphere," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 233-246.
    15. Last, Michael & Shumway, Robert, 2008. "Detecting abrupt changes in a piecewise locally stationary time series," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 191-214, February.
    16. Jozef Barunik & Michael Ellington, 2020. "Dynamic Network Risk," Papers 2006.04639, arXiv.org, revised Jul 2020.
    17. Fu, Zhonghao & Hong, Yongmiao, 2019. "A model-free consistent test for structural change in regression possibly with endogeneity," Journal of Econometrics, Elsevier, vol. 211(1), pages 206-242.
    18. Kley, Tobias & Preuss, Philip & Fryzlewicz, Piotr, 2019. "Predictive, finite-sample model choice for time series under stationarity and non-stationarity," LSE Research Online Documents on Economics 101748, London School of Economics and Political Science, LSE Library.
    19. Ashton Wiens & Douglas Nychka & William Kleiber, 2020. "Modeling spatial data using local likelihood estimation and a Matérn to spatial autoregressive translation," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    20. Tata Subba Rao & Granville Tunnicliffe Wilson & Joao Jesus & Richard E. Chandler, 2017. "Inference with the Whittle Likelihood: A Tractable Approach Using Estimating Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 204-224, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:96:y:2005:i:1:p:30-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.