IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v60y2008i4p781-800.html
   My bibliography  Save this article

An angular–linear time series model for waveheight prediction

Author

Listed:
  • Tsukasa Hokimoto
  • Kunio Shimizu

Abstract

No abstract is available for this item.

Suggested Citation

  • Tsukasa Hokimoto & Kunio Shimizu, 2008. "An angular–linear time series model for waveheight prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 781-800, December.
  • Handle: RePEc:spr:aistmt:v:60:y:2008:i:4:p:781-800
    DOI: 10.1007/s10463-008-0207-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-008-0207-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-008-0207-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rainer Dahlhaus & Liudas Giraitis, 1998. "On the Optimal Segment Length for Parameter Estimates for Locally Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(6), pages 629-655, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsukasa Hokimoto & Kunio Shimizu, 2014. "A non-homogeneous hidden Markov model for predicting the distribution of sea surface elevation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 294-319, February.
    2. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Casini, Alessandro & Perron, Pierre, 2024. "Change-point analysis of time series with evolutionary spectra," Journal of Econometrics, Elsevier, vol. 242(2).
    2. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023. "Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.
    3. Beran, Jan, 2007. "On parameter estimation for locally stationary long-memory processes," CoFE Discussion Papers 07/13, University of Konstanz, Center of Finance and Econometrics (CoFE).
    4. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    5. Schnaubelt, Matthias, 2019. "A comparison of machine learning model validation schemes for non-stationary time series data," FAU Discussion Papers in Economics 11/2019, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    6. Kley, Tobias & Preuss, Philip & Fryzlewicz, Piotr, 2019. "Predictive, finite-sample model choice for time series under stationarity and non-stationarity," LSE Research Online Documents on Economics 101748, London School of Economics and Political Science, LSE Library.
    7. Zani, Marguerite, 2002. "Large Deviations for Quadratic Forms of Locally Stationary Processes," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 205-228, May.
    8. Alessandro Casini, 2021. "Theory of Evolutionary Spectra for Heteroskedasticity and Autocorrelation Robust Inference in Possibly Misspecified and Nonstationary Models," Papers 2103.02981, arXiv.org, revised Aug 2024.
    9. Casini, Alessandro & Perron, Pierre, 2024. "Prewhitened long-run variance estimation robust to nonstationarity," Journal of Econometrics, Elsevier, vol. 242(1).
    10. Alessandro Casini, 2022. "Theory of Evolutionary Spectra for Heteroskedasticity and Autocorrelation Robust Inference in Possibly Misspecified and Nonstationary Models," CEIS Research Paper 539, Tor Vergata University, CEIS, revised 11 Apr 2022.
    11. Giraitis, L. & Kapetanios, G. & Yates, T., 2014. "Inference on stochastic time-varying coefficient models," Journal of Econometrics, Elsevier, vol. 179(1), pages 46-65.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:60:y:2008:i:4:p:781-800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.