IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v73y2021i6d10.1007_s10463-020-00780-1.html
   My bibliography  Save this article

Fast estimation of multivariate spatiotemporal Hawkes processes and network reconstruction

Author

Listed:
  • Baichuan Yuan

    (University of California, Los Angeles)

  • Frederic P. Schoenberg

    (University of California)

  • Andrea L. Bertozzi

    (University of California, Los Angeles)

Abstract

We present a fast, accurate estimation method for multivariate Hawkes self-exciting point processes widely used in seismology, criminology, finance and other areas. There are two major ingredients. The first is an analytic derivation of exact maximum likelihood estimates of the nonparametric triggering density. We develop this for the multivariate case and add regularization to improve stability and robustness. The second is a moment-based method for the background rate and triggering matrix estimation, which is extended here for the spatiotemporal case. Our method combines them together in an efficient way, and we prove the consistency of this new approach. Extensive numerical experiments, with synthetic data and real-world social network data, show that our method improves the accuracy, scalability and computational efficiency of prevailing estimation approaches. Moreover, it greatly boosts the performance of Hawkes process-based models on social network reconstruction and helps to understand the spatiotemporal triggering dynamics over social media.

Suggested Citation

  • Baichuan Yuan & Frederic P. Schoenberg & Andrea L. Bertozzi, 2021. "Fast estimation of multivariate spatiotemporal Hawkes processes and network reconstruction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1127-1152, December.
  • Handle: RePEc:spr:aistmt:v:73:y:2021:i:6:d:10.1007_s10463-020-00780-1
    DOI: 10.1007/s10463-020-00780-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-020-00780-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-020-00780-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emmanuel Bacry & Iacopo Mastromatteo & Jean-Franc{c}ois Muzy, 2015. "Hawkes processes in finance," Papers 1502.04592, arXiv.org, revised May 2015.
    2. Tata Subba Rao & Granville Tunnicliffe Wilson & Michael Eichler & Rainer Dahlhaus & Johannes Dueck, 2017. "Graphical Modeling for Multivariate Hawkes Processes with Nonparametric Link Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 225-242, March.
    3. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    4. Frederic Paik Schoenberg & Joshua Seth Gordon & Ryan J. Harrigan, 2018. "Analytic computation of nonparametric Marsan–Lengliné estimates for Hawkes point processes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(3), pages 742-757, July.
    5. Yosihiko Ogata, 1998. "Space-Time Point-Process Models for Earthquake Occurrences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 379-402, June.
    6. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    7. Zhuang J. & Ogata Y. & Vere-Jones D., 2002. "Stochastic Declustering of Space-Time Earthquake Occurrences," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 369-380, June.
    8. Mohler, George, 2014. "Marked point process hotspot maps for homicide and gun crime prediction in Chicago," International Journal of Forecasting, Elsevier, vol. 30(3), pages 491-497.
    9. Eric W. Fox & Martin B. Short & Frederic P. Schoenberg & Kathryn D. Coronges & Andrea L. Bertozzi, 2016. "Modeling E-mail Networks and Inferring Leadership Using Self-Exciting Point Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 564-584, April.
    10. Earvin Balderama & Frederic Paik Schoenberg & Erin Murray & Philip W. Rundel, 2012. "Application of Branching Models in the Study of Invasive Species," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 467-476, June.
    11. Frederic Schoenberg, 2006. "On Non-simple Marked Point Processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 223-233, June.
    12. Veen, Alejandro & Schoenberg, Frederic P., 2008. "Estimation of SpaceTime Branching Process Models in Seismology Using an EMType Algorithm," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 614-624, June.
    13. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenlong Li & Kaiyan Cui, 2024. "Multivariate Hawkes processes with spatial covariates for spatiotemporal event data analysis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(4), pages 535-578, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenlong Li & Zhanjie Song & Wenjun Wang, 2020. "Space–time inhomogeneous background intensity estimators for semi-parametric space–time self-exciting point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 945-967, August.
    2. Frederic Paik Schoenberg & Marc Hoffmann & Ryan J. Harrigan, 2019. "A recursive point process model for infectious diseases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1271-1287, October.
    3. Gresnigt, Francine & Kole, Erik & Franses, Philip Hans, 2015. "Interpreting financial market crashes as earthquakes: A new Early Warning System for medium term crashes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 123-139.
    4. Frederic Paik Schoenberg, 2022. "Nonparametric estimation of variable productivity Hawkes processes," Environmetrics, John Wiley & Sons, Ltd., vol. 33(6), September.
    5. Eric W. Fox & Martin B. Short & Frederic P. Schoenberg & Kathryn D. Coronges & Andrea L. Bertozzi, 2016. "Modeling E-mail Networks and Inferring Leadership Using Self-Exciting Point Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 564-584, April.
    6. Angelos Dassios & Hongbiao Zhao, 2017. "A Generalized Contagion Process With An Application To Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-33, February.
    7. Vipul Aggarwal & Elina H. Hwang & Yong Tan, 2021. "Learning to Be Creative: A Mutually Exciting Spatiotemporal Point Process Model for Idea Generation in Open Innovation," Information Systems Research, INFORMS, vol. 32(4), pages 1214-1235, December.
    8. Dassios, Angelos & Zhao, Hongbiao, 2017. "A generalised contagion process with an application to credit risk," LSE Research Online Documents on Economics 68558, London School of Economics and Political Science, LSE Library.
    9. Giada Adelfio & Marcello Chiodi, 2021. "Including covariates in a space-time point process with application to seismicity," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 947-971, September.
    10. Kajita, Mami & Kajita, Seiji, 2020. "Crime prediction by data-driven Green’s function method," International Journal of Forecasting, Elsevier, vol. 36(2), pages 480-488.
    11. Jakob Gulddahl Rasmussen, 2013. "Bayesian Inference for Hawkes Processes," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 623-642, September.
    12. Mohler, George & Carter, Jeremy & Raje, Rajeev, 2018. "Improving social harm indices with a modulated Hawkes process," International Journal of Forecasting, Elsevier, vol. 34(3), pages 431-439.
    13. Alex Reinhart & Joel Greenhouse, 2018. "Self‐exciting point processes with spatial covariates: modelling the dynamics of crime," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1305-1329, November.
    14. Rachele Foschi & Francesca Lilla & Cecilia Mancini, 2020. "Warnings about future jumps: properties of the exponential Hawkes model," Working Papers 13/2020, University of Verona, Department of Economics.
    15. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    16. Huang, Lorick & Khabou, Mahmoud, 2023. "Nonlinear Poisson autoregression and nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 201-241.
    17. Dewei Wang & Chendi Jiang & Chanseok Park, 2019. "Reliability analysis of load-sharing systems with memory," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 341-360, April.
    18. Kuroda, Kaori & Hashiguchi, Hiroki & Fujiwara, Kantaro & Ikeguchi, Tohru, 2014. "Reconstruction of network structures from marked point processes using multi-dimensional scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 194-204.
    19. van den Hengel, G. & Franses, Ph.H.B.F., 2018. "Forecasting social conflicts in Africa using an Epidemic Type Aftershock Sequence model," Econometric Institute Research Papers EI2018-31, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Mohler, George, 2014. "Marked point process hotspot maps for homicide and gun crime prediction in Chicago," International Journal of Forecasting, Elsevier, vol. 30(3), pages 491-497.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:73:y:2021:i:6:d:10.1007_s10463-020-00780-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.