Consistent classification of non-stationary time series using stochastic wavelet representations
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hernando Ombao & Jonathan Raz & Rainer von Sachs & Wensheng Guo, 2002. "The SLEX Model of a Non-Stationary Random Process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 171-200, March.
- Fryzlewicz, Piotr, 2007. "Unbalanced Haar technique for nonparametric function estimation," LSE Research Online Documents on Economics 25216, London School of Economics and Political Science, LSE Library.
- Fryzlewicz, Piotr, 2007. "Unbalanced Haar Technique for Nonparametric Function Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1318-1327, December.
- Sun, Wenguang & Cai, T. Tony, 2007. "Oracle and Adaptive Compound Decision Rules for False Discovery Rate Control," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 901-912, September.
- Nason, G.P. & von Sachs, R., 1999. "Wavelets in Time Series Analysis," Papers 9901, Catholique de Louvain - Institut de statistique.
- Dahlhaus, R., 1996. "On the Kullback-Leibler information divergence of locally stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 139-168, March.
- Fryzlewicz, Piotr & van Bellegem, Sébastien & von Sachs, Rainer, 2003. "Forecasting non-stationary time series by wavelet process modelling," LSE Research Online Documents on Economics 25830, London School of Economics and Political Science, LSE Library.
- Ombao H. C & Raz J. A & von Sachs R. & Malow B. A, 2001. "Automatic Statistical Analysis of Bivariate Nonstationary Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 543-560, June.
- Piotr Fryzlewicz & Sébastien Bellegem & Rainer Sachs, 2003. "Forecasting non-stationary time series by wavelet process modelling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 737-764, December.
- Chandler, Gabriel & Polonik, Wolfgang, 2006. "Discrimination of Locally Stationary Time Series Based on the Excess Mass Functional," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 240-253, March.
- Shumway, Robert H., 2003. "Time-frequency clustering and discriminant analysis," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 307-314, July.
- Hsiao-Yun Huang & Hernando Ombao & David S. Stoffer, 2004. "Discrimination and Classification of Nonstationary Time Series Using the SLEX Model," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 763-774, January.
- Sakiyama, Kenji & Taniguchi, Masanobu, 2004. "Discriminant analysis for locally stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 282-300, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Minji Kim & Hee-Seok Oh & Yaeji Lim, 2023. "Zero-Inflated Time Series Clustering Via Ensemble Thick-Pen Transform," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 407-431, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrés Alonso & David Casado & Sara López-Pintado & Juan Romo, 2014. "Robust Functional Supervised Classification for Time Series," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 325-350, October.
- Casado, David & López Pintado, Sara, 2008. "A functional data based method for time series classification," DES - Working Papers. Statistics and Econometrics. WS ws087427, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Zhelin Huang & Ngai Hang Chan, 2020. "Walsh Fourier Transform of Locally Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 312-340, March.
- Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
- Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
- Tata Subba Rao & Granville Tunnicliffe Wilson & Alessandro Cardinali & Guy P. Nason, 2017. "Locally Stationary Wavelet Packet Processes: Basis Selection and Model Fitting," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 151-174, March.
- Schroeder, Anna Louise & Fryzlewicz, Piotr, 2013.
"Adaptive trend estimation in financial time series via multiscale change-point-induced basis recovery,"
LSE Research Online Documents on Economics
54934, London School of Economics and Political Science, LSE Library.
- Schröder, Anna Louise & Fryzlewicz, Piotr, 2013. "Adaptive trend estimation in financial time series via multiscale change-point-induced basis recovery," MPRA Paper 52379, University Library of Munich, Germany.
- Guy Nason & Kara Stevens, 2015. "Bayesian Wavelet Shrinkage of the Haar-Fisz Transformed Wavelet Periodogram," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-24, September.
- Chau, Joris & von Sachs, Rainer, 2022. "Time-varying spectral matrix estimation via intrinsic wavelet regression for surfaces of Hermitian positive definite matrices," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Antonis A. Michis & Guy P. Nason, 2017. "Case study: shipping trend estimation and prediction via multiscale variance stabilisation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2672-2684, November.
- Last, Michael & Shumway, Robert, 2008. "Detecting abrupt changes in a piecewise locally stationary time series," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 191-214, February.
- Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
- Maharaj, Elizabeth A. & Alonso, Andres M., 2007. "Discrimination of locally stationary time series using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 879-895, October.
- Giurcanu Mihai & Spokoiny Vladimir, 2004. "Confidence estimation of the covariance function of stationary and locally stationary processes," Statistics & Risk Modeling, De Gruyter, vol. 22(4), pages 283-300, April.
- von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hossein Hassani & Mohammad Reza Yeganegi & Emmanuel Sirimal Silva, 2018. "A New Signal Processing Approach for Discrimination of EEG Recordings," Stats, MDPI, vol. 1(1), pages 1-14, November.
- Piotr Fryzlewicz & Sébastien Bellegem & Rainer Sachs, 2003. "Forecasting non-stationary time series by wavelet process modelling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 737-764, December.
- Ruprecht Puchstein & Philip Preuß, 2016. "Testing for Stationarity in Multivariate Locally Stationary Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 3-29, January.
- Chau, Van Vinh & von Sachs, Rainer, 2018. "Intrinsic wavelet regression for surfaces of Hermitian positive definite matrices," LIDAM Discussion Papers ISBA 2018025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Guy Nason, 2013. "A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 879-904, November.
More about this item
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:25162. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.