IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v2y1999i3p253-285.html
   My bibliography  Save this article

Estimation of Time Varying Linear Systems

Author

Listed:
  • Chang Chiann
  • Pedro Morettin

Abstract

No abstract is available for this item.

Suggested Citation

  • Chang Chiann & Pedro Morettin, 1999. "Estimation of Time Varying Linear Systems," Statistical Inference for Stochastic Processes, Springer, vol. 2(3), pages 253-285, October.
  • Handle: RePEc:spr:sistpr:v:2:y:1999:i:3:p:253-285
    DOI: 10.1023/A:1009999208631
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1009999208631
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1009999208631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael H. Neumann, 1996. "Spectral Density Estimation Via Nonlinear Wavelet Methods For Stationary Non‐Gaussian Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(6), pages 601-633, November.
    2. Dahlhaus, R. & Neumann, M. & Von Sachs, R., 1997. "Nonlinear Wavelet Estimation of Time-Varying Autoregressive Processes," SFB 373 Discussion Papers 1997,34, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sato, Joao R. & Morettin, Pedro A. & Arantes, Paula R. & Amaro Jr., Edson, 2007. "Wavelet based time-varying vector autoregressive modelling," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5847-5866, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahlhaus, Rainer & Neumann, Michael H., 2001. "Locally adaptive fitting of semiparametric models to nonstationary time series," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 277-308, February.
    2. Offer Lieberman & Peter C. B. Phillips, 2014. "Norming Rates And Limit Theory For Some Time-Varying Coefficient Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 592-623, November.
    3. Kristensen, Dennis, 2009. "Uniform Convergence Rates Of Kernel Estimators With Heterogeneous Dependent Data," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1433-1445, October.
    4. Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.
    5. Sato, Joao R. & Morettin, Pedro A. & Arantes, Paula R. & Amaro Jr., Edson, 2007. "Wavelet based time-varying vector autoregressive modelling," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5847-5866, August.
    6. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    7. Duchesne, Pierre & Li, Linyuan & Vandermeerschen, Jill, 2010. "On testing for serial correlation of unknown form using wavelet thresholding," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2512-2531, November.
    8. Piotr Fryzlewicz & Guy P. Nason & Rainer Von Sachs, 2008. "A wavelet‐Fisz approach to spectrum estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 868-880, September.
    9. Wolfgang Härdle & Torsten Kleinow & Rolf Tschernig, 2001. "Web Quantlets for Time Series Analysis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 179-188, March.
    10. Li, Yushu & Shukur, Ghazi, 2009. "Testing for Unit Root against LSTAR Model: Wavelet Improvement under GARCH Distortion," CAFO Working Papers 2009:6, Linnaeus University, Centre for Labour Market Policy Research (CAFO), School of Business and Economics.
    11. Zhou, Yong & Wan, Alan T.K. & Xie, Shangyu & Wang, Xiaojing, 2010. "Wavelet analysis of change-points in a non-parametric regression with heteroscedastic variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 183-201, November.
    12. Panayiotis Tzeremes, 2020. "The impact of total factor productivity on energy consumption and CO2 emissions in G20 countries," Economics Bulletin, AccessEcon, vol. 40(3), pages 2179-2192.
    13. Butucea, Cristina & Zgheib, Rania, 2016. "Sharp minimax tests for large Toeplitz covariance matrices with repeated observations," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 164-176.
    14. Jin Lee, 2000. "One-Sided Testing for ARCH Effect Using Wavelets," Econometric Society World Congress 2000 Contributed Papers 1214, Econometric Society.
    15. Shahbaz, Muhammad & Mahalik, Mantu Kumar & Shah, Syed Hasanat & Sato, João Ricardo, 2016. "Time-varying analysis of CO2 emissions, energy consumption, and economic growth nexus: Statistical experience in next 11 countries," Energy Policy, Elsevier, vol. 98(C), pages 33-48.
    16. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Stephanos Papadamou & Nikolaos A. Kyriazis & Panayiotis G. Tzeremes, 2019. "Spillover Effects of US QE and QE Tapering on African and Middle Eastern Stock Indices," JRFM, MDPI, vol. 12(2), pages 1-20, April.
    18. Piotr Fryzlewicz & Sébastien Bellegem & Rainer Sachs, 2003. "Forecasting non-stationary time series by wavelet process modelling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 737-764, December.
    19. Michael Vogt, 2012. "Nonparametric regression for locally stationary time series," CeMMAP working papers CWP22/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. G. E. Salcedo & R. F. Porto & S. Y. Roa & F. R. Momo, 2012. "A wavelet-based time-varying autoregressive model for non-stationary and irregular time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2313-2325, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:2:y:1999:i:3:p:253-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.