IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i7p1712-1727.html
   My bibliography  Save this article

Autoregressive frequency detection using Regularized Least Squares

Author

Listed:
  • Chen, Bei
  • Gel, Yulia R.

Abstract

Tracking of an unknown frequency embedded in noise is widely applied in a variety of applications. Unknown frequencies can be obtained by approximating generalized spectral density of a periodic process by an autoregressive (AR) model. The advantage is that an AR model has a simple structure and its parameters can be easily estimated iteratively, which is crucial for online (real-time) applications. Typically, the order of the AR approximation is chosen by information criteria. However, with an increase of a sample size, model order may change, which leads to re-estimation of all model parameters. We propose a new iterative procedure for frequency detection based on a regularization of an empirical information matrix. The suggested method enables to avoid the repeated model selection as well as parameter estimation steps and therefore optimize computational costs. The asymptotic properties of the proposed regularized AR (RAR) frequency estimates are derived and performance of RAR is evaluated by numerical examples.

Suggested Citation

  • Chen, Bei & Gel, Yulia R., 2010. "Autoregressive frequency detection using Regularized Least Squares," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1712-1727, August.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:7:p:1712-1727
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00046-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Zhao‐Guo Chen & Ka Ho Wu & Rainer Dahlhaus, 2000. "Hidden Frequency Estimation with Data Tapers," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(2), pages 113-142, March.
    3. Ta‐Hsin Li & Benjamin Kedem, 1998. "Tracking abrupt frequency changes," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 69-82, January.
    4. Furrer, Reinhard & Bengtsson, Thomas, 2007. "Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 227-255, February.
    5. M. S. Mackisack & D. S. Poskitt, 1990. "Some Properties Of Autoregressive Estimates For Processes With Mixed Spectra," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(4), pages 325-337, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaimeng Zhang & Chi Tim Ng & Myung Hwan Na, 2020. "Real time prediction of irregular periodic time series data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 501-511, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    2. Xiaoping Zhou & Dmitry Malioutov & Frank J. Fabozzi & Svetlozar T. Rachev, 2014. "Smooth monotone covariance for elliptical distributions and applications in finance," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1555-1571, September.
    3. Zvi Bodie & Jérôme Detemple & Marcel Rindisbacher, 2009. "Life-Cycle Finance and the Design of Pension Plans," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 249-286, November.
    4. Yu, Philip L.H. & Wang, Xiaohang & Zhu, Yuanyuan, 2017. "High dimensional covariance matrix estimation by penalizing the matrix-logarithm transformed likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 12-25.
    5. Farnè, Matteo & Montanari, Angela, 2020. "A large covariance matrix estimator under intermediate spikiness regimes," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    6. Huang, Na & Fryzlewicz, Piotr, 2018. "NOVELIST estimator of large correlation and covariance matrices and their inverses," LSE Research Online Documents on Economics 89055, London School of Economics and Political Science, LSE Library.
    7. Fang, Qian & Yu, Chen & Weiping, Zhang, 2020. "Regularized estimation of precision matrix for high-dimensional multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    8. Wang, Xuanci & Zhang, Bin, 2024. "Target selection in shrinkage estimation of covariance matrix: A structural similarity approach," Statistics & Probability Letters, Elsevier, vol. 208(C).
    9. Na Huang & Piotr Fryzlewicz, 2019. "NOVELIST estimator of large correlation and covariance matrices and their inverses," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 694-727, September.
    10. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    11. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    12. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
    13. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    14. Yuan, Ke-Hai & Chan, Wai, 2008. "Structural equation modeling with near singular covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4842-4858, June.
    15. Christian Bongiorno, 2020. "Bootstraps Regularize Singular Correlation Matrices," Working Papers hal-02536278, HAL.
    16. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    17. Arbia, Giuseppe & Bramante, Riccardo & Facchinetti, Silvia & Zappa, Diego, 2018. "Modeling inter-country spatial financial interactions with Graphical Lasso: An application to sovereign co-risk evaluation," Regional Science and Urban Economics, Elsevier, vol. 70(C), pages 72-79.
    18. Tae-Hwy Lee & Ekaterina Seregina, 2024. "Optimal Portfolio Using Factor Graphical Lasso," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 670-695.
    19. Ding, Hui & Zhang, Jian & Zhang, Riquan, 2022. "Nonparametric variable screening for multivariate additive models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    20. McCoy, E. J. & Stephens, D. A., 2004. "Bayesian time series analysis of periodic behaviour and spectral structure," International Journal of Forecasting, Elsevier, vol. 20(4), pages 713-730.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:7:p:1712-1727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.