IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i5p1263-1273.html
   My bibliography  Save this article

Generalized Levinson-Durbin sequences, binomial coefficients and autoregressive estimation

Author

Listed:
  • Shaman, Paul

Abstract

For a discrete time second-order stationary process, the Levinson-Durbin recursion is used to determine the coefficients of the best linear predictor of the observation at time k+1, given k previous observations, best in the sense of minimizing the mean square error. The coefficients determined by the recursion define a Levinson-Durbin sequence. We also define a generalized Levinson-Durbin sequence and note that binomial coefficients form a special case of a generalized Levinson-Durbin sequence. All generalized Levinson-Durbin sequences are shown to obey summation formulas which generalize formulas satisfied by binomial coefficients. Levinson-Durbin sequences arise in the construction of several autoregressive model coefficient estimators. The least squares autoregressive estimator does not give rise to a Levinson-Durbin sequence, but least squares fixed point processes, which yield least squares estimates of the coefficients unbiased to order 1/T, where T is the sample length, can be combined to construct a Levinson-Durbin sequence. By contrast, analogous fixed point processes arising from the Yule-Walker estimator do not combine to construct a Levinson-Durbin sequence, although the Yule-Walker estimator itself does determine a Levinson-Durbin sequence. The least squares and Yule-Walker fixed point processes are further studied when the mean of the process is a polynomial time trend that is estimated by least squares.

Suggested Citation

  • Shaman, Paul, 2010. "Generalized Levinson-Durbin sequences, binomial coefficients and autoregressive estimation," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1263-1273, May.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:5:p:1263-1273
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00010-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard A. Lewis & Gregory C. Reinsel, 1988. "Prediction Error Of Multivariate Time Series With Mis‐Specified Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 9(1), pages 43-57, January.
    2. H.‐C. Zhang, 1992. "Reduction Of The Asymptotic Bias Of Autoregressive And Spectral Estimators By Tapering," Journal of Time Series Analysis, Wiley Blackwell, vol. 13(5), pages 451-469, September.
    3. Pascal Bondon, 2001. "Recursive Relations for Multistep Prediction of a Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(4), pages 399-410, July.
    4. Brockwell, P. J. & Dahlhaus, R., 2004. "Generalized Levinson-Durbin and Burg algorithms," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 129-149.
    5. Barndorff-Nielsen, O. & Schou, G., 1973. "On the parametrization of autoregressive models by partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 3(4), pages 408-419, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso Proietti, 2016. "The Multistep Beveridge--Nelson Decomposition," Econometric Reviews, Taylor & Francis Journals, vol. 35(3), pages 373-395, March.
    2. Proietti, Tommaso, 2011. "Direct and iterated multistep AR methods for difference stationary processes," International Journal of Forecasting, Elsevier, vol. 27(2), pages 266-280, April.
    3. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    4. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    5. Sattarhoff, Cristina & Lux, Thomas, 2023. "Forecasting the variability of stock index returns with the multifractal random walk model for realized volatilities," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1678-1697.
    6. Marco Del Negro & Frank Schorfheide, 2009. "Monetary Policy Analysis with Potentially Misspecified Models," American Economic Review, American Economic Association, vol. 99(4), pages 1415-1450, September.
    7. Philippe, Anne, 2006. "Bayesian analysis of autoregressive moving average processes with unknown orders," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1904-1923, December.
    8. Chen, Cathy W.S. & Yu, Tiffany H.K., 2005. "Long-term dependence with asymmetric conditional heteroscedasticity in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 413-424.
    9. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
    10. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
    11. Tommaso Proietti & Alessandra Luati, 2013. "The Exponential Model for the Spectrum of a Time Series: Extensions and Applications," CEIS Research Paper 272, Tor Vergata University, CEIS, revised 19 Apr 2013.
    12. Ilya Archakov & Peter Reinhard Hansen & Yiyao Luo, 2024. "A new method for generating random correlation matrices," The Econometrics Journal, Royal Economic Society, vol. 27(2), pages 188-212.
    13. Gabriele Fiorentini & Enrique Sentana, 2016. "Neglected serial correlation tests in UCARIMA models," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 121-178, March.
    14. Fitzgibbon, L.J., 2006. "On sampling stationary autoregressive model parameters uniformly in r2 value," Statistics & Probability Letters, Elsevier, vol. 76(4), pages 349-352, February.
    15. Sattarhoff, Cristina & Lux, Thomas, 2021. "Forecasting the Variability of Stock Index Returns with the Multifractal Random Walk Model for Realized Volatilities," Economics Working Papers 2021-02, Christian-Albrechts-University of Kiel, Department of Economics.
    16. Fiorentini, Gabriele & Galesi, Alessandro & Sentana, Enrique, 2018. "A spectral EM algorithm for dynamic factor models," Journal of Econometrics, Elsevier, vol. 205(1), pages 249-279.
    17. Neuhoff, Daniel, 2015. "Dynamics of real per capita GDP," SFB 649 Discussion Papers 2015-039, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Luigi Spezia & Andy Vinten & Roberta Paroli & Marc Stutter, 2021. "An evolutionary Monte Carlo method for the analysis of turbidity high‐frequency time series through Markov switching autoregressive models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    19. Paul Labonne & Martin Weale, 2018. "Temporal disaggregation of overlapping noisy quarterly data using state space models: Estimation of monthly business sector output from Value Added Tax data in the UK," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-18, Economic Statistics Centre of Excellence (ESCoE).
    20. Smith, Michael Stanley & Maneesoonthorn, Worapree, 2018. "Inversion copulas from nonlinear state space models with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 34(3), pages 389-407.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:5:p:1263-1273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.