IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v110y2023i4p1099-1115..html
   My bibliography  Save this article

A subsampling perspective for extending the validity of state-of-the-art bootstraps in the frequency domain

Author

Listed:
  • Haihan Yu
  • Mark S Kaiser
  • Daniel J Nordman

Abstract

SummaryBootstrapping spectral mean statistics has been a notoriously difficult problem over the past 25 years. Many frequency domain bootstraps are valid only for certain time series structures, e.g., linear processes, or for special types of statistics, i.e., ratio statistics, because such bootstraps fail to capture the limiting variance of spectral statistics in general settings. We address this issue with a different form of resampling, namely, subsampling. While not considered previously, subsampling provides consistent variance estimation under much weaker conditions than any existing bootstrap in the frequency domain. Mixing is not used, as is often standard with subsampling. Rather, subsampling can be generally justified under the same conditions needed for original spectral mean statistics to have distributional limits in the first place. This result has impacts for other bootstrap methods. Subsampling then applies to extending the validity of recent state-of-the-art bootstraps in the frequency domain. We nontrivially link subsampling to such bootstraps, which broadens their range, as moment and block assumptions needed for these are cut by more than half. Essentially, state-of-the-art bootstraps then require no more stringent assumptions than those needed for a target limit distribution to exist, which is unusual in the bootstrap world. We also close a gap in the theory of subsampling for time series with distributional approximations, in addition to variance estimation, for frequency domain statistics.

Suggested Citation

  • Haihan Yu & Mark S Kaiser & Daniel J Nordman, 2023. "A subsampling perspective for extending the validity of state-of-the-art bootstraps in the frequency domain," Biometrika, Biometrika Trust, vol. 110(4), pages 1099-1115.
  • Handle: RePEc:oup:biomet:v:110:y:2023:i:4:p:1099-1115.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asad006
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jentsch, Carsten & Kreiss, Jens-Peter, 2010. "The multiple hybrid bootstrap -- Resampling multivariate linear processes," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2320-2345, November.
    2. Dahlhaus, Rainer, 1985. "Asymptotic normality of spectral estimates," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 412-431, June.
    3. Jens-peter Kreiss & Efstathios Paparoditis, 2012. "The Hybrid Wild Bootstrap for Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1073-1084, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franziska Häfner & Claudia Kirch, 2017. "Moving Fourier Analysis for Locally Stationary Processes with the Bootstrap in View," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 895-922, November.
    2. Maria Fragkeskou & Efstathios Paparoditis∗, 2016. "Inference for the Fourth-Order Innovation Cumulant in Linear Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(2), pages 240-266, March.
    3. Peter Brockwell & Jens-Peter Kreiss & Tobias Niebuhr, 2014. "Bootstrapping continuous-time autoregressive processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 75-92, February.
    4. Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
    5. Jentsch, Carsten & Pauly, Markus, 2012. "A note on using periodogram-based distances for comparing spectral densities," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 158-164.
    6. Jentsch, Carsten & Kreiss, Jens-Peter, 2010. "The multiple hybrid bootstrap -- Resampling multivariate linear processes," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2320-2345, November.
    7. Qihui Chen & Zheng Fang, 2018. "Improved Inference on the Rank of a Matrix," Papers 1812.02337, arXiv.org, revised Mar 2019.
    8. C. Jentsch & J.-P. Kreiss & P. Mantalos & E. Paparoditis, 2012. "Hybrid bootstrap aided unit root testing," Computational Statistics, Springer, vol. 27(4), pages 779-797, December.
    9. Stefan Bruder & Michael Wolf, 2018. "Balanced Bootstrap Joint Confidence Bands for Structural Impulse Response Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(5), pages 641-664, September.
    10. Daniel Janas & Rainer von Sachs, 1995. "Consistency For Non‐Linear Functions Of The Periodogram Of Tapered Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(6), pages 585-606, November.
    11. Kim, Young Min & Nordman, Daniel J., 2013. "A frequency domain bootstrap for Whittle estimation under long-range dependence," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 405-420.
    12. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    13. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.
    14. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Fiecas, Mark & von Sachs, Rainer, 2012. "Spectral density shrinkage for high-dimensional time series," LIDAM Discussion Papers ISBA 2012037, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Kokoszka, P. & Mikosch, T., 1997. "The integrated periodogram for long-memory processes with finite or infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 66(1), pages 55-78, February.
    17. McElroy, Tucker S. & Politis, Dimitris N., 2014. "Spectral density and spectral distribution inference for long memory time series via fixed-b asymptotics," Journal of Econometrics, Elsevier, vol. 182(1), pages 211-225.
    18. Tobias Niebuhr & Jens-Peter Kreiss, 2014. "Asymptotics for Autocovariances and Integrated Periodograms for Linear Processes Observed at Lower Frequencies," International Statistical Review, International Statistical Institute, vol. 82(1), pages 123-140, April.
    19. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    20. Rainer Sachs, 1994. "Estimating non-linear functions of the spectral density, using a data-taper," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(3), pages 453-474, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:110:y:2023:i:4:p:1099-1115.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.