IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v68y2006i5p721-746.html
   My bibliography  Save this article

Semiparametric estimation by model selection for locally stationary processes

Author

Listed:
  • Sébastien Van Bellegem
  • Rainer Dahlhaus

Abstract

Summary. Over recent decades increasingly more attention has been paid to the problem of how to fit a parametric model of time series with time‐varying parameters. A typical example is given by autoregressive models with time‐varying parameters. We propose a procedure to fit such time‐varying models to general non‐stationary processes. The estimator is a maximum Whittle likelihood estimator on sieves. The results do not assume that the observed process belongs to a specific class of time‐varying parametric models. We discuss in more detail the fitting of time‐varying AR(p) processes for which we treat the problem of the selection of the order p, and we propose an iterative algorithm for the computation of the estimator. A comparison with model selection by Akaike's information criterion is provided through simulations.

Suggested Citation

  • Sébastien Van Bellegem & Rainer Dahlhaus, 2006. "Semiparametric estimation by model selection for locally stationary processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(5), pages 721-746, November.
  • Handle: RePEc:bla:jorssb:v:68:y:2006:i:5:p:721-746
    DOI: 10.1111/j.1467-9868.2006.00564.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2006.00564.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2006.00564.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dahlhaus, Rainer, 2009. "Local inference for locally stationary time series based on the empirical spectral measure," Journal of Econometrics, Elsevier, vol. 151(2), pages 101-112, August.
    2. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    3. Beran, Jan, 2007. "On parameter estimation for locally stationary long-memory processes," CoFE Discussion Papers 07/13, University of Konstanz, Center of Finance and Econometrics (CoFE).
    4. Abdelkamel Alj & Christophe Ley & Guy Melard, 2015. "Asymptotic Properties of QML Estimators for VARMA Models with Time-Dependent Coefficients: Part I," Working Papers ECARES ECARES 2015-21, ULB -- Universite Libre de Bruxelles.
    5. Abdelkamel Alj & Rajae Azrak & Christophe Ley & Guy Mélard, 2017. "Asymptotic Properties of QML Estimators for VARMA Models with Time-dependent Coefficients," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 617-635, September.
    6. Eckley, Idris A. & Nason, Guy P., 2011. "LS2W: Implementing the Locally Stationary 2D Wavelet Process Approach in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i03).
    7. VAN BELLEGEM, Sébastien, 2011. "Locally stationary volatility modelling," LIDAM Discussion Papers CORE 2011041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Marios Sergides & Efstathios Paparoditis, 2009. "Frequency Domain Tests of Semiparametric Hypotheses for Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 800-821, December.
    9. Cardinali Alessandro & Nason Guy P, 2011. "Costationarity of Locally Stationary Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 2(2), pages 1-35, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:68:y:2006:i:5:p:721-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.