IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v81y2002i2p205-228.html
   My bibliography  Save this article

Large Deviations for Quadratic Forms of Locally Stationary Processes

Author

Listed:
  • Zani, Marguerite

Abstract

We are interested in large deviations for consistent statistics which are quadratic forms of Gaussian locally stationary processes in the sense of Dahlhaus.

Suggested Citation

  • Zani, Marguerite, 2002. "Large Deviations for Quadratic Forms of Locally Stationary Processes," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 205-228, May.
  • Handle: RePEc:eee:jmvana:v:81:y:2002:i:2:p:205-228
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(01)92003-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bercu, B. & Gamboa, F. & Rouault, A., 1997. "Large deviations for quadratic forms of stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 71(1), pages 75-90, October.
    2. Rainer Dahlhaus & Liudas Giraitis, 1998. "On the Optimal Segment Length for Parameter Estimates for Locally Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(6), pages 629-655, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kakizawa, Yoshihide, 2007. "Moderate deviations for quadratic forms in Gaussian stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 992-1017, May.
    2. Inder Tecuapetla-Gómez & Michael Nussbaum, 2012. "On large deviations in testing simple hypotheses for locally stationary Gaussian processes," Statistical Inference for Stochastic Processes, Springer, vol. 15(3), pages 225-239, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kley, Tobias & Preuss, Philip & Fryzlewicz, Piotr, 2019. "Predictive, finite-sample model choice for time series under stationarity and non-stationarity," LSE Research Online Documents on Economics 101748, London School of Economics and Political Science, LSE Library.
    2. Casini, Alessandro & Perron, Pierre, 2024. "Change-point analysis of time series with evolutionary spectra," Journal of Econometrics, Elsevier, vol. 242(2).
    3. Kakizawa, Yoshihide, 2000. "On Bahadur asymptotic efficiency of the maximum likelihood and quasi-maximum likelihood estimators in Gaussian stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 85(1), pages 29-44, January.
    4. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023. "Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.
    5. Miao, Yu & Yin, Qing, 2024. "Cramér’s moderate deviations for the LS estimator of the autoregressive processes in the neighborhood of the unit root," Statistics & Probability Letters, Elsevier, vol. 209(C).
    6. Beran, Jan, 2007. "On parameter estimation for locally stationary long-memory processes," CoFE Discussion Papers 07/13, University of Konstanz, Center of Finance and Econometrics (CoFE).
    7. Worms, Julien, 2001. "Large and moderate deviations upper bounds for the Gaussian autoregressive process," Statistics & Probability Letters, Elsevier, vol. 51(3), pages 235-243, February.
    8. Gamboa, F. & Rouault, A. & Zani, M., 1999. "A functional large deviations principle for quadratic forms of Gaussian stationary processes," Statistics & Probability Letters, Elsevier, vol. 43(3), pages 299-308, July.
    9. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    10. Schnaubelt, Matthias, 2019. "A comparison of machine learning model validation schemes for non-stationary time series data," FAU Discussion Papers in Economics 11/2019, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    11. Kanaya, Shin & Otsu, Taisuke, 2012. "Large deviations of realized volatility," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 546-581.
    12. Macci, Claudio & Pacchiarotti, Barbara, 2017. "Large deviations for estimators of the parameters of a neuronal response latency model," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 65-75.
    13. Hacène Djellout & Arnaud Guillin & Yacouba Samoura, 2014. "Large Deviations Of The Realized (Co-)Volatility Vector," Working Papers hal-01082903, HAL.
    14. Hacène Djellout & Arnaud Guillin & Yacouba Samoura, 2017. "Large Deviations Of The Realized (Co-)Volatility Vector," Post-Print hal-01082903, HAL.
    15. Alessandro Casini, 2021. "Theory of Evolutionary Spectra for Heteroskedasticity and Autocorrelation Robust Inference in Possibly Misspecified and Nonstationary Models," Papers 2103.02981, arXiv.org, revised Aug 2024.
    16. Yu Miao & Yanling Wang & Guangyu Yang, 2015. "Moderate Deviation Principles for Empirical Covariance in the Neighbourhood of the Unit Root," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 234-255, March.
    17. Casini, Alessandro & Perron, Pierre, 2024. "Prewhitened long-run variance estimation robust to nonstationarity," Journal of Econometrics, Elsevier, vol. 242(1).
    18. Wang, Xiaochang & Feng, Shui & Guo, Yiping & Rémillard, Bruno N., 2024. "Large deviations for the Yule–Walker estimator of near critical autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 214(C).
    19. Kakizawa, Yoshihide, 2007. "Moderate deviations for quadratic forms in Gaussian stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 992-1017, May.
    20. Yu, Miao & Si, Shen, 2009. "Moderate deviation principle for autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1952-1961, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:81:y:2002:i:2:p:205-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.