IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i7p3310-3330.html
   My bibliography  Save this article

Multiscale spectral analysis for detecting short and long range change points in time series

Author

Listed:
  • Olsen, Lena Ringstad
  • Chaudhuri, Probal
  • Godtliebsen, Fred

Abstract

Identifying short and long range change points in an observed time series that consists of stationary segments is a common problem. These change points mark the time boundaries of the segments where the time series leaves one stationary state and enters another. Due to certain technical advantages, analysis is carried out in the frequency domain to identify such change points in the time domain. What is considered as a change may depend on the time scale. The results of the analysis are displayed in the form of graphs that display change points on different time horizons (time scales), which are observed to be statistically significant. The methodology is illustrated using several simulated and real time series data. The method works well to detect change points and illustrates the importance of analysing the time series on different time horizons.

Suggested Citation

  • Olsen, Lena Ringstad & Chaudhuri, Probal & Godtliebsen, Fred, 2008. "Multiscale spectral analysis for detecting short and long range change points in time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3310-3330, March.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3310-3330
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00438-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hernando Ombao & Jonathan Raz & Rainer von Sachs & Wensheng Guo, 2002. "The SLEX Model of a Non-Stationary Random Process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 171-200, March.
    2. Davis, Richard A. & Lee, Thomas C.M. & Rodriguez-Yam, Gabriel A., 2006. "Structural Break Estimation for Nonstationary Time Series Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 223-239, March.
    3. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    4. Sato, Joao R. & Morettin, Pedro A. & Arantes, Paula R. & Amaro Jr., Edson, 2007. "Wavelet based time-varying vector autoregressive modelling," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5847-5866, August.
    5. Oigard, Tor Arne & Rue, Havard & Godtliebsen, Fred, 2006. "Bayesian multiscale analysis for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1719-1730, December.
    6. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    7. Bruce E. Hansen, 2001. "The New Econometrics of Structural Change: Dating Breaks in U.S. Labour Productivity," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 117-128, Fall.
    8. Ombao H. C & Raz J. A & von Sachs R. & Malow B. A, 2001. "Automatic Statistical Analysis of Bivariate Nonstationary Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 543-560, June.
    9. Cheolwoo Park & J. S. Marron & Vitaliana Rondonotti, 2004. "Dependent SiZer: Goodness-of-Fit Tests for Time Series Models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(8), pages 999-1017.
    10. Park, Cheolwoo & Godtliebsen, Fred & Taqqu, Murad & Stoev, Stilian & Marron, J.S., 2007. "Visualization and inference based on wavelet coefficients, SiZer and SiNos," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5994-6012, August.
    11. Polansky, Alan M., 2007. "Detecting change-points in Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6013-6026, August.
    12. Ligges, Uwe & Weihs, Claus & Hasse-Becker, Petra, 2002. "Detection of locally stationary segments in time series: Algorithms and applications," Technical Reports 2002,11, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    13. Dahlhaus, Rainer & Neumann, Michael H., 2001. "Locally adaptive fitting of semiparametric models to nonstationary time series," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 277-308, February.
    14. Balke, Nathan S, 1993. "Detecting Level Shifts in Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 81-92, January.
    15. Hsiao-Yun Huang & Hernando Ombao & David S. Stoffer, 2004. "Discrimination and Classification of Nonstationary Time Series Using the SLEX Model," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 763-774, January.
    16. D. S. Coates & P. J. Diggle, 1986. "Tests For Comparing Two Estimated Spectral Densities," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(1), pages 7-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huh, Jib & Park, Cheolwoo, 2015. "Theoretical investigation of an exploratory approach for log-density in scale-space," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 272-279.
    2. Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2008. "Modelling the US, UK and Japanese unemployment rates: Fractional integration and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4998-5013, July.
    3. Alessandra Micheletti & Giacomo Aletti & Giulia Ferrandi & Danilo Bertoni & Daniele Cavicchioli & Roberto Pretolani, 2020. "A weighted $$\chi ^2$$ χ 2 test to detect the presence of a major change point in non-stationary Markov chains," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 899-912, December.
    4. Lasse Holmström & Leena Pasanen, 2017. "Statistical Scale Space Methods," International Statistical Review, International Statistical Institute, vol. 85(1), pages 1-30, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Ngai Hang Chan & Chun Yip Yau & Rong-Mao Zhang, 2014. "Group LASSO for Structural Break Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 590-599, June.
    3. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    4. Jaehee Kim & Chulwoo Jeong, 2016. "A Bayesian multiple structural change regression model with autocorrelated errors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(9), pages 1690-1705, July.
    5. Casini, Alessandro & Perron, Pierre, 2024. "Change-point analysis of time series with evolutionary spectra," Journal of Econometrics, Elsevier, vol. 242(2).
    6. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
    7. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    8. van Dijk, D.J.C. & Osborn, D.R. & Sensier, M., 2002. "Changes in variability of the business cycle in the G7 countries," Econometric Institute Research Papers EI 2002-28, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    9. Link, Albert N. & van Hasselt, Martijn, 2019. "On the transfer of technology from universities: The impact of the Bayh–Dole Act of 1980 on the institutionalization of university research," European Economic Review, Elsevier, vol. 119(C), pages 472-481.
    10. Yaein Baek, 2018. "Estimation of a Structural Break Point in Linear Regression Models," Papers 1811.03720, arXiv.org, revised Jun 2020.
    11. David N. DeJong & Roman Liesenfeld & Jean‐Francois Richard, 2006. "Timing structural change: a conditional probabilistic approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 175-190, March.
    12. Last, Michael & Shumway, Robert, 2008. "Detecting abrupt changes in a piecewise locally stationary time series," Journal of Multivariate Analysis, Elsevier, vol. 99(2), pages 191-214, February.
    13. Hervé Le Bihan, 2004. "Tests de rupture : une application au PIB tendanciel français," Economie & Prévision, La Documentation Française, vol. 163(2), pages 133-154.
    14. Nilsen, Øivind Anti & Sørgard, Lars & Ulsaker, Simen A., 2016. "Upstream merger in a successive oligopoly: Who pays the price?," International Journal of Industrial Organization, Elsevier, vol. 48(C), pages 143-172.
    15. Laura Mayoral, 2005. "Is the observed persistence spurious? A test for fractional integration versus short memory and structural breaks," Economics Working Papers 956, Department of Economics and Business, Universitat Pompeu Fabra.
    16. Cheolwoo Park & Yongho Jeon & Kee-Hoon Kang, 2016. "An exploratory data analysis in scale-space for interval-valued data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2643-2660, October.
    17. Huh, Jib & Park, Cheolwoo, 2015. "Theoretical investigation of an exploratory approach for log-density in scale-space," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 272-279.
    18. Zeileis, Achim & Kleiber, Christian & Kramer, Walter & Hornik, Kurt, 2003. "Testing and dating of structural changes in practice," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 109-123, October.
    19. Achim Zeileis & Friedrich Leisch & Christian Kleiber & Kurt Hornik, 2005. "Monitoring structural change in dynamic econometric models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 99-121, January.
    20. Jouini, Jamel & Boutahar, Mohamed, 2005. "Evidence on structural changes in U.S. time series," Economic Modelling, Elsevier, vol. 22(3), pages 391-422, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:7:p:3310-3330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.