IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v74y2022i2d10.1007_s10463-021-00802-6.html
   My bibliography  Save this article

Whittle estimation for continuous-time stationary state space models with finite second moments

Author

Listed:
  • Vicky Fasen-Hartmann

    (Karlsruhe Institute of Technology)

  • Celeste Mayer

    (Karlsruhe Institute of Technology)

Abstract

We consider Whittle estimation for the parameters of a stationary solution of a continuous-time linear state space model sampled at low frequencies. In our context, the driving process is a Lévy process which allows flexible margins of the underlying model. The Lévy process is supposed to have finite second moments. Then, the classes of stationary solutions of linear state space models and of multivariate CARMA processes coincide. We prove that the Whittle estimator, which is based on the periodogram, is strongly consistent and asymptotically normal. A comparison with ARMA models shows that in the continuous-time setting the limit covariance matrix of the estimator has an additional term for non-Gaussian models. Thereby, we investigate the asymptotic normality of the integrated periodogram. Furthermore, for univariate processes we introduce an adjusted version of the Whittle estimator and derive its asymptotic properties. The practical applicability of our estimators is demonstrated through a simulation study.

Suggested Citation

  • Vicky Fasen-Hartmann & Celeste Mayer, 2022. "Whittle estimation for continuous-time stationary state space models with finite second moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 233-270, April.
  • Handle: RePEc:spr:aistmt:v:74:y:2022:i:2:d:10.1007_s10463-021-00802-6
    DOI: 10.1007/s10463-021-00802-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-021-00802-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-021-00802-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dahlhaus, R. & Pötscher, B. M., 1989. "Convergence results for maximum likelihood type estimators in multivariable ARMA models II," Journal of Multivariate Analysis, Elsevier, vol. 30(2), pages 241-244, August.
    2. Dahlhaus, Rainer, 1988. "Empirical spectral processes and their applications to time series analysis," Stochastic Processes and their Applications, Elsevier, vol. 30(1), pages 69-83, November.
    3. Henghsiu Tsai & K. S. Chan, 2005. "Quasi‐Maximum Likelihood Estimation for a Class of Continuous‐time Long‐memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 691-713, September.
    4. Harvey, A. C. & Stock, James H., 1989. "Estimating integrated higher-order continuous time autoregressions with an application to money-income causality," Journal of Econometrics, Elsevier, vol. 42(3), pages 319-336, November.
    5. Harvey, A. C. & Stock, James H., 1988. "Continuous time autoregressive models with common stochastic trends," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 365-384.
    6. Thornton, Michael A. & Chambers, Marcus J., 2017. "Continuous time ARMA processes: Discrete time representation and likelihood evaluation," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 48-65.
    7. Marquardt, Tina, 2007. "Multivariate fractionally integrated CARMA processes," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1705-1725, October.
    8. Peter J. Brockwell & Alexander Lindner, 2019. "Sampling, Embedding and Inference for CARMA Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(2), pages 163-181, March.
    9. Harvey, A. C. & Stock, James H., 1985. "The Estimation of Higher-Order Continuous Time Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 1(1), pages 97-117, April.
    10. Jean‐Marc Bardet & Paul Doukhan & José Rafael León, 2008. "Uniform limit theorems for the integrated periodogram of weakly dependent time series and their applications to Whittle's estimate," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 906-945, September.
    11. Vicky Fasen‐Hartmann & Sebastian Kimmig, 2020. "Robust estimation of stationary continuous‐time arma models via indirect inference," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(5), pages 620-651, September.
    12. Hansen, Lars Peter & Sargent, Thomas J, 1983. "The Dimensionality of the Aliasing Problem in Models with Rational Spectral Densities," Econometrica, Econometric Society, vol. 51(2), pages 377-387, March.
    13. Blevins, Jason R., 2017. "Identifying Restrictions For Finite Parameter Continuous Time Models With Discrete Time Data," Econometric Theory, Cambridge University Press, vol. 33(3), pages 739-754, June.
    14. Marquardt, Tina & Stelzer, Robert, 2007. "Multivariate CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 96-120, January.
    15. Phillips, P. C. B., 1973. "The problem of identification in finite parameter continuous time models," Journal of Econometrics, Elsevier, vol. 1(4), pages 351-362, December.
    16. Vicky Fasen & Florian Fuchs, 2013. "Spectral estimates for high-frequency sampled continuous-time autoregressive moving average processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 532-551, September.
    17. Mikosch, T. & Norvaisa, R., 1997. "Uniform convergence of the empirical spectral distribution function," Stochastic Processes and their Applications, Elsevier, vol. 70(1), pages 85-114, October.
    18. Henghsiu Tsai & K. S. Chan, 2005. "Maximum likelihood estimation of linear continuous time long memory processes with discrete time data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 703-716, November.
    19. Zadrozny, Peter, 1988. "Gaussian Likelihood of Continuous-Time ARMAX Models When Data Are Stocks and Flows at Different Frequencies," Econometric Theory, Cambridge University Press, vol. 4(1), pages 108-124, April.
    20. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fasen-Hartmann, Vicky & Mayer, Celeste, 2023. "Empirical spectral processes for stationary state space models," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 319-354.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    2. Fasen-Hartmann, Vicky & Mayer, Celeste, 2023. "Empirical spectral processes for stationary state space models," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 319-354.
    3. Vicky Fasen‐Hartmann & Sebastian Kimmig, 2020. "Robust estimation of stationary continuous‐time arma models via indirect inference," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(5), pages 620-651, September.
    4. Thornton, Michael A. & Chambers, Marcus J., 2017. "Continuous time ARMA processes: Discrete time representation and likelihood evaluation," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 48-65.
    5. Thornton, Michael A. & Chambers, Marcus J., 2016. "The exact discretisation of CARMA models with applications in finance," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 739-761.
    6. Michael A. Thornton & Marcus J. Chambers, 2013. "Temporal aggregation in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 13, pages 289-310, Edward Elgar Publishing.
    7. Zadrozny, Peter A., 2016. "Extended Yule–Walker identification of VARMA models with single- or mixed-frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 438-446.
    8. Hansen, Lars Peter & Scheinkman, Jose Alexandre, 1995. "Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes," Econometrica, Econometric Society, vol. 63(4), pages 767-804, July.
    9. Nielsen, Mikkel Slot, 2020. "On non-stationary solutions to MSDDEs: Representations and the cointegration space," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3154-3173.
    10. Basse-O’Connor, Andreas & Nielsen, Mikkel Slot & Pedersen, Jan & Rohde, Victor, 2019. "Multivariate stochastic delay differential equations and CAR representations of CARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 4119-4143.
    11. P. Brockwell, 2014. "Recent results in the theory and applications of CARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 647-685, August.
    12. Milena Hoyos, 2020. "Mixed First‐ and Second‐Order Cointegrated Continuous Time Models with Mixed Stock and Flow Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 249-267, March.
    13. Benth, Fred Espen & Karbach, Sven, 2023. "Multivariate continuous-time autoregressive moving-average processes on cones," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 299-337.
    14. Chambers, Marcus J., 1999. "Discrete time representation of stationary and non-stationary continuous time systems," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 619-639, February.
    15. Can, S.U. & Mikosch, T. & Samorodnitsky, G., 2010. "Weak Convergence of the function-indexed integrated periodogram for infinite variance processes," Other publications TiSEM 3be90f1b-2f53-4987-b46e-c, Tilburg University, School of Economics and Management.
    16. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    17. Michael A. Thornton & Marcus J. Chambers, 2013. "Continuous-time autoregressive moving average processes in discrete time: representation and embeddability," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 552-561, September.
    18. Xu, Weijun & Sun, Qi & Xiao, Weilin, 2012. "A new energy model to capture the behavior of energy price processes," Economic Modelling, Elsevier, vol. 29(5), pages 1585-1591.
    19. Jeremy Berkowitz, 2000. "On identification of continuous time stochastic processes," Finance and Economics Discussion Series 2000-07, Board of Governors of the Federal Reserve System (U.S.).
    20. Sikora, Grzegorz & Michalak, Anna & Bielak, Łukasz & Miśta, Paweł & Wyłomańska, Agnieszka, 2019. "Stochastic modeling of currency exchange rates with novel validation techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1202-1215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:74:y:2022:i:2:d:10.1007_s10463-021-00802-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.