IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/25227.html
   My bibliography  Save this paper

Haar-Fisz estimation of evolutionary wavelet spectra

Author

Listed:
  • Fryzlewicz, Piotr
  • Nason, Guy P.

Abstract

We propose a new 'Haar–Fisz' technique for estimating the time-varying, piecewise constant local variance of a locally stationary Gaussian time series. We apply our technique to the estimation of the spectral structure in the locally stationary wavelet model. Our method combines Haar wavelets and the variance stabilizing Fisz transform. The resulting estimator is mean square consistent, rapidly computable and easy to implement, and performs well in practice. We also introduce the 'Haar–Fisz transform', a device for stabilizing the variance of scaled χ2-data and bringing their distribution close to Gaussianity.

Suggested Citation

  • Fryzlewicz, Piotr & Nason, Guy P., 2006. "Haar-Fisz estimation of evolutionary wavelet spectra," LSE Research Online Documents on Economics 25227, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:25227
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/25227/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hernando Ombao & Jonathan Raz & Rainer von Sachs & Wensheng Guo, 2002. "The SLEX Model of a Non-Stationary Random Process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 171-200, March.
    2. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
    3. Guy Mélard & Annie Herteleer‐de Schutter, 1989. "Contributions To Evolutionary Spectral Theory," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(1), pages 41-63, January.
    4. G. P. Nason & R. Von Sachs & G. Kroisandt, 2000. "Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 271-292.
    5. Davis, Richard A. & Lee, Thomas C.M. & Rodriguez-Yam, Gabriel A., 2006. "Structural Break Estimation for Nonstationary Time Series Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 223-239, March.
    6. Guy Melard & Annie Herteleer, 1989. "Contributions to the evolutionary spectral theory," ULB Institutional Repository 2013/13708, ULB -- Universite Libre de Bruxelles.
    7. Piotr Fryzlewicz & Theofanis Sapatinas & Suhasini Subba Rao, 2006. "A Haar--Fisz technique for locally stationary volatility estimation," Biometrika, Biometrika Trust, vol. 93(3), pages 687-704, September.
    8. Jones, M. C., 1987. "On moments of ratios of quadratic forms in normal variables," Statistics & Probability Letters, Elsevier, vol. 6(2), pages 129-136, November.
    9. Rainer Von Sachs & Brenda Macgibbon, 2000. "Non‐parametric Curve Estimation by Wavelet Thresholding with Locally Stationary Errors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(3), pages 475-499, September.
    10. Dahlhaus, R., 1996. "On the Kullback-Leibler information divergence of locally stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 139-168, March.
    11. Fryzlewicz, Piotr & Sapatinas, Theofanis & Subba Rao, Suhasini, 2006. "A Haar-Fisz technique for locally stationary volatility estimation," LSE Research Online Documents on Economics 25225, London School of Economics and Political Science, LSE Library.
    12. Ghazal, G. A., 1994. "Moments of the ratio of two dependent quadratic forms," Statistics & Probability Letters, Elsevier, vol. 20(4), pages 313-319, July.
    13. Hong‐Ye Gao, 1997. "Choice of thresholds for wavelet shrinkage estimate of the spectrum," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(3), pages 231-251, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Embleton, Jonathan & Knight, Marina I. & Ombao, Hernando, 2022. "Wavelet testing for a replicate-effect within an ordered multiple-trial experiment," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    2. I A Eckley & G P Nason, 2018. "A test for the absence of aliasing or local white noise in locally stationary wavelet time series," Biometrika, Biometrika Trust, vol. 105(4), pages 833-848.
    3. Piotr Fryzlewicz & Guy P. Nason & Rainer Von Sachs, 2008. "A wavelet‐Fisz approach to spectrum estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 868-880, September.
    4. Guy Nason, 2013. "A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 879-904, November.
    5. Winkelmann, Lars, 2010. "The Norges Bank's key rate projections and the news element of monetary policy: A wavelet based jump detection approach," SFB 649 Discussion Papers 2010-062, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Zhelin Huang & Ngai Hang Chan, 2020. "Walsh Fourier Transform of Locally Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 312-340, March.
    7. Winkelmann, Lars, 2013. "Quantitative forward guidance and the predictability of monetary policy: A wavelet based jump detection approach," SFB 649 Discussion Papers 2013-016, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018. "Simultaneous multiple change-point and factor analysis for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 206(1), pages 187-225.
    9. Antonis A. Michis & Guy P. Nason, 2017. "Case study: shipping trend estimation and prediction via multiscale variance stabilisation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2672-2684, November.
    10. repec:hum:wpaper:sfb649dp2013-016 is not listed on IDEAS
    11. Sanderson, Jean & Fryzlewicz, Piotr & Jones, M. W., 2010. "Estimating linear dependence between nonstationary time series using the locally stationary wavelet model," LSE Research Online Documents on Economics 29141, London School of Economics and Political Science, LSE Library.
    12. Zhou Zhou, 2013. "Inference for non-stationary time-series autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 508-516, July.
    13. Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
    14. Cardinali Alessandro & Nason Guy P, 2011. "Costationarity of Locally Stationary Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 2(2), pages 1-35, January.
    15. Fryzlewicz, Piotr & Delouille, V´eronique & Nason, Guy P., 2007. "GOES-8 X-ray sensor variance stabilization using the multiscale data-driven Haar-Fisz transform," LSE Research Online Documents on Economics 25221, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    2. Schroeder, Anna Louise & Fryzlewicz, Piotr, 2013. "Adaptive trend estimation in financial time series via multiscale change-point-induced basis recovery," LSE Research Online Documents on Economics 54934, London School of Economics and Political Science, LSE Library.
    3. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.
    4. von Sachs, Rainer, 2019. "Spectral Analysis of Multivariate Time Series," LIDAM Discussion Papers ISBA 2019008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Fryzlewicz, Piotr & Nason, Guy P. & von Sachs, Rainer, 2008. "A wavelet-Fisz approach to spectrum estimation," LSE Research Online Documents on Economics 25186, London School of Economics and Political Science, LSE Library.
    6. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    7. Joseph Guinness & Michael L. Stein, 2013. "Transformation to approximate independence for locally stationary Gaussian processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 574-590, September.
    8. Guy Nason, 2013. "A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 879-904, November.
    9. Fryzlewicz, Piotr, 2018. "Likelihood ratio Haar variance stabilization and normalization for Poisson and other non-Gaussian noise removal," LSE Research Online Documents on Economics 82942, London School of Economics and Political Science, LSE Library.
    10. Fryzlewicz, Piotr & Sapatinas, Theofanis & Subba Rao, Suhasini, 2006. "A Haar-Fisz technique for locally stationary volatility estimation," LSE Research Online Documents on Economics 25225, London School of Economics and Political Science, LSE Library.
    11. Piotr Fryzlewicz & Guy P. Nason & Rainer Von Sachs, 2008. "A wavelet‐Fisz approach to spectrum estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 868-880, September.
    12. Winkelmann, Lars, 2013. "Quantitative forward guidance and the predictability of monetary policy: A wavelet based jump detection approach," SFB 649 Discussion Papers 2013-016, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Inder Tecuapetla-Gómez & Axel Munk, 2017. "Autocovariance Estimation in Regression with a Discontinuous Signal and m-Dependent Errors: A Difference-Based Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 346-368, June.
    14. Philip Preuss & Mathias Vetter & Holger Dette, 2013. "Testing Semiparametric Hypotheses in Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 417-437, September.
    15. Salcedo, Gladys E. & Porto, Rogério F. & Morettin, Pedro A., 2012. "Comparing non-stationary and irregularly spaced time series," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3921-3934.
    16. Antonis A. Michis & Guy P. Nason, 2017. "Case study: shipping trend estimation and prediction via multiscale variance stabilisation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2672-2684, November.
    17. Khismatullina, Marina & Vogt, Michael, 2023. "Nonparametric comparison of epidemic time trends: The case of COVID-19," Journal of Econometrics, Elsevier, vol. 232(1), pages 87-108.
    18. Fryzlewicz, Piotr & Ombao, Hernando, 2009. "Consistent classification of non-stationary time series using stochastic wavelet representations," LSE Research Online Documents on Economics 25162, London School of Economics and Political Science, LSE Library.
    19. Wang Haoyu & Junpeng Di & Qing Han, 2023. "Adaptive hedging horizon and hedging performance estimation," Papers 2302.00251, arXiv.org.
    20. Bill Russell & Dooruj Rambaccussing, 2016. "Breaks and the Statistical Process of Inflation: The Case of the ‘Modern’ Phillips Curve," Dundee Discussion Papers in Economics 294, Economic Studies, University of Dundee.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:25227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.