IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v70y1997i1p85-114.html
   My bibliography  Save this article

Uniform convergence of the empirical spectral distribution function

Author

Listed:
  • Mikosch, T.
  • Norvaisa, R.

Abstract

Let X be a linear process having a finite fourth moment. Assume is a class of square-integrable functions. We consider the empirical spectral distribution function Jn,X based on X and indexed by . If is totally bounded then Jn,X satisfies a uniform strong law of large numbers. If, in addition, a metric entropy condition holds, then Jn,X obeys the uniform central limit theorem.

Suggested Citation

  • Mikosch, T. & Norvaisa, R., 1997. "Uniform convergence of the empirical spectral distribution function," Stochastic Processes and their Applications, Elsevier, vol. 70(1), pages 85-114, October.
  • Handle: RePEc:eee:spapps:v:70:y:1997:i:1:p:85-114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(97)00053-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dahlhaus, Rainer, 1988. "Empirical spectral processes and their applications to time series analysis," Stochastic Processes and their Applications, Elsevier, vol. 30(1), pages 69-83, November.
    2. Arcones, Miguel A. & Giné, Evarist, 1995. "On the law of the iterated logarithm for canonical U-statistics and processes," Stochastic Processes and their Applications, Elsevier, vol. 58(2), pages 217-245, August.
    3. Kokoszka, P. & Mikosch, T., 1997. "The integrated periodogram for long-memory processes with finite or infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 66(1), pages 55-78, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vicky Fasen-Hartmann & Celeste Mayer, 2022. "Whittle estimation for continuous-time stationary state space models with finite second moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 233-270, April.
    2. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.
    3. Can, S.U. & Mikosch, T. & Samorodnitsky, G., 2010. "Weak Convergence of the function-indexed integrated periodogram for infinite variance processes," Other publications TiSEM 3be90f1b-2f53-4987-b46e-c, Tilburg University, School of Economics and Management.
    4. Kokoszka, Piotr & Mikosch, Thomas, 2000. "The periodogram at the Fourier frequencies," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 49-79, March.
    5. Jean‐Marc Bardet & Paul Doukhan & José Rafael León, 2008. "Uniform limit theorems for the integrated periodogram of weakly dependent time series and their applications to Whittle's estimate," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 906-945, September.
    6. Fasen-Hartmann, Vicky & Mayer, Celeste, 2023. "Empirical spectral processes for stationary state space models," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 319-354.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fasen-Hartmann, Vicky & Mayer, Celeste, 2023. "Empirical spectral processes for stationary state space models," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 319-354.
    2. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.
    3. Can, S.U. & Mikosch, T. & Samorodnitsky, G., 2010. "Weak Convergence of the function-indexed integrated periodogram for infinite variance processes," Other publications TiSEM 3be90f1b-2f53-4987-b46e-c, Tilburg University, School of Economics and Management.
    4. Kokoszka, Piotr & Mikosch, Thomas, 2000. "The periodogram at the Fourier frequencies," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 49-79, March.
    5. Ørregaard Nielsen, Morten, 2004. "Local empirical spectral measure of multivariate processes with long range dependence," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 145-166, January.
    6. Sun, Liuquan & Zhou, Yong, 1998. "Sequential confidence bands for densities under truncated and censored data," Statistics & Probability Letters, Elsevier, vol. 40(1), pages 31-41, September.
    7. Surgailis, Donatas, 0. "Stable limits of empirical processes of moving averages with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 255-274, July.
    8. Bhansali, R.J. & Giraitis, L. & Kokoszka, P.S., 2007. "Approximations and limit theory for quadratic forms of linear processes," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 71-95, January.
    9. Salim Bouzebda & Thouria El-hadjali & Anouar Abdeldjaoued Ferfache, 2023. "Uniform in Bandwidth Consistency of Conditional U-statistics Adaptive to Intrinsic Dimension in Presence of Censored Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1548-1606, August.
    10. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    11. Ruprecht Puchstein & Philip Preuß, 2016. "Testing for Stationarity in Multivariate Locally Stationary Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 3-29, January.
    12. Vicky Fasen-Hartmann & Celeste Mayer, 2022. "Whittle estimation for continuous-time stationary state space models with finite second moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 233-270, April.
    13. C. Sánchez-Sellero & W. González-Manteiga & R. Cao, 1999. "Bandwidth Selection in Density Estimation with Truncated and Censored Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(1), pages 51-70, March.
    14. Vitalii Makogin & Marco Oesting & Albert Rapp & Evgeny Spodarev, 2021. "Long range dependence for stable random processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 161-185, March.
    15. Peng, Liang, 2001. "Semi-parametric estimation of long-range dependence index in infinite variance time series," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 101-109, January.
    16. Takayuki Shiohama & Masanobu Taniguchi, 2001. "Sequential Estimation for a Functional of the Spectral Density of a Gaussian Stationary Process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 142-158, March.
    17. Jean‐Marc Bardet & Paul Doukhan & José Rafael León, 2008. "Uniform limit theorems for the integrated periodogram of weakly dependent time series and their applications to Whittle's estimate," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 906-945, September.
    18. Radosław Adamczak & Rafał Latała, 2008. "The LIL for U-Statistics in Hilbert Spaces," Journal of Theoretical Probability, Springer, vol. 21(3), pages 704-744, September.
    19. Wendler, Martin, 2012. "U-processes, U-quantile processes and generalized linear statistics of dependent data," Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 787-807.
    20. Jon A. Wellner, 2017. "The Bennett-Orlicz Norm," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 355-383, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:70:y:1997:i:1:p:85-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.