IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v173y2024ics0304414924000632.html
   My bibliography  Save this article

Asymptotic normality of spectral means of Hilbert space valued random processes

Author

Listed:
  • Rademacher, Daniel
  • Kreiß, Jens-Peter
  • Paparoditis, Efstathios

Abstract

A variety of statistics for functional time series allows for a representation as weighted average of corresponding periodogram operators over the frequency domain. We study consistency and asymptotic normality of such spectral mean estimators under mild assumptions. We show that weak convergence of these estimators can be deduced from the (joint) weak convergence of the sample autocovariance operators. The latter is established for a large class of weakly dependent functional time series, which admit expansions as Bernoulli shifts and the weak dependence is quantified by the condition of L4-m-approximability.

Suggested Citation

  • Rademacher, Daniel & Kreiß, Jens-Peter & Paparoditis, Efstathios, 2024. "Asymptotic normality of spectral means of Hilbert space valued random processes," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:spapps:v:173:y:2024:i:c:s0304414924000632
    DOI: 10.1016/j.spa.2024.104357
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924000632
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harald E. Krogstad, 1982. "On The Covariance Of The Periodogram," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(3), pages 195-207, May.
    2. Berkes, István & Horváth, Lajos & Rice, Gregory, 2016. "On the asymptotic normality of kernel estimators of the long run covariance of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 150-175.
    3. Cerovecki, Clément & Hörmann, Siegfried, 2017. "On the CLT for discrete Fourier transforms of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 282-295.
    4. Dahlhaus, Rainer, 1985. "Asymptotic normality of spectral estimates," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 412-431, June.
    5. Characiejus, Vaidotas & Rice, Gregory, 2020. "A general white noise test based on kernel lag-window estimates of the spectral density operator," Econometrics and Statistics, Elsevier, vol. 13(C), pages 175-196.
    6. Kokoszka, Piotr & Reimherr, Matthew, 2013. "Asymptotic normality of the principal components of functional time series," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1546-1562.
    7. Panaretos, Victor M. & Tavakoli, Shahin, 2013. "Cramér–Karhunen–Loève representation and harmonic principal component analysis of functional time series," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2779-2807.
    8. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    9. van Delft, Anne, 2020. "A note on quadratic forms of stationary functional time series under mild conditions," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4206-4251.
    10. Siegfried Hörmann & Łukasz Kidziński & Marc Hallin, 2015. "Dynamic functional principal components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 319-348, March.
    11. A. Aue & G. Rice & O. Sönmez, 2020. "Structural break analysis for spectrum and trace of covariance operators," Environmetrics, John Wiley & Sons, Ltd., vol. 31(1), February.
    12. Berkes, István & Hörmann, Siegfried & Schauer, Johannes, 2009. "Asymptotic results for the empirical process of stationary sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1298-1324, April.
    13. Kokoszka, P. & Mikosch, T., 1997. "The integrated periodogram for long-memory processes with finite or infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 66(1), pages 55-78, February.
    14. van Delft, Anne & Eichler, Michael, 2020. "A note on Herglotz’s theorem for time series on function spaces," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3687-3710.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salish, Nazarii & Gleim, Alexander, 2019. "A moment-based notion of time dependence for functional time series," Journal of Econometrics, Elsevier, vol. 212(2), pages 377-392.
    2. van Delft, Anne, 2020. "A note on quadratic forms of stationary functional time series under mild conditions," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4206-4251.
    3. Berkes, István & Horváth, Lajos & Rice, Gregory, 2016. "On the asymptotic normality of kernel estimators of the long run covariance of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 150-175.
    4. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    5. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Amira Elayouty & Marian Scott & Claire Miller, 2022. "Time-Varying Functional Principal Components for Non-Stationary EpCO $$_2$$ 2 in Freshwater Systems," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 506-522, September.
    7. Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    8. Alessia Caponera, 2021. "SPHARMA approximations for stationary functional time series on the sphere," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 609-634, October.
    9. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    10. Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
    11. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.
    12. Horta, Eduardo & Ziegelmann, Flavio, 2018. "Conjugate processes: Theory and application to risk forecasting," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 727-755.
    13. van Delft, Anne & Eichler, Michael, 2020. "A note on Herglotz’s theorem for time series on function spaces," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3687-3710.
    14. Klepsch, J. & Klüppelberg, C., 2017. "An innovations algorithm for the prediction of functional linear processes," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 252-271.
    15. Dimitrios Pilavakis & Efstathios Paparoditis & Theofanis Sapatinas, 2020. "Testing equality of autocovariance operators for functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 571-589, July.
    16. Haolun Shi & Jiguo Cao, 2022. "Robust Functional Principal Component Analysis Based on a New Regression Framework," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 523-543, September.
    17. Yang, Yang & Yang, Yanrong & Shang, Han Lin, 2022. "Feature extraction for functional time series: Theory and application to NIR spectroscopy data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Kokoszka, Piotr & Reimherr, Matthew & Wölfing, Nikolas, 2016. "A randomness test for functional panels," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 37-53.
    19. Lakraj, Gamage Pemantha & Ruymgaart, Frits, 2017. "Some asymptotic theory for Silverman’s smoothed functional principal components in an abstract Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 122-132.
    20. Sven Otto & Nazarii Salish, 2022. "Approximate Factor Models for Functional Time Series," Papers 2201.02532, arXiv.org, revised May 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:173:y:2024:i:c:s0304414924000632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.