IDEAS home Printed from https://ideas.repec.org/e/c/pau34.html
   My authors  Follow this author

Francesco Audrino

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Wikipedia or ReplicationWiki mentions

(Only mentions on Wikipedia that link back to a page on a RePEc service)
  1. Francesco Audrino & Marcelo C. Medeiros, 2011. "Modeling and forecasting short‐term interest rates: The benefits of smooth regimes, macroeconomic variables, and bagging," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 999-1022, September.

    Mentioned in:

    1. Modeling and forecasting short-term interest rates: The benefits of smooth regimes, Macroeconomic variables, and bagging (Journal of Applied Econometrics 2011) in ReplicationWiki ()
    2. Modelling and forecasting Multivariate realized volatility (Journal of Applied Econometrics 2011) in ReplicationWiki ()

Working papers

  1. Audrino, Francesco & Camponovo, Lorenzo & Roth, Constantin, 2015. "Testing the lag structure of assets’ realized volatility dynamics," Economics Working Paper Series 1501, University of St. Gallen, School of Economics and Political Science.

    Cited by:

    1. Niu, Zibo & Ma, Feng & Zhang, Hongwei, 2022. "The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 112(C).
    2. Arnaud Dufays & Jeroen V. K. Rombouts, 2019. "Sparse Change-point HAR Models for Realized Variance," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 857-880, September.
    3. Yao, Xingzhi & Izzeldin, Marwan & Li, Zhenxiong, 2019. "A novel cluster HAR-type model for forecasting realized volatility," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1318-1331.
    4. Tian Xie, 2019. "Forecast Bitcoin Volatility with Least Squares Model Averaging," Econometrics, MDPI, vol. 7(3), pages 1-20, September.

  2. Audrino, Francesco & Huitema, Robert & Ludwig, Markus, 2014. "An Empirical Analysis of the Ross Recovery Theorem," Economics Working Paper Series 1411, University of St. Gallen, School of Economics and Political Science.

    Cited by:

    1. Jensen, Christian Skov & Lando, David & Pedersen, Lasse Heje, 2019. "Generalized recovery," Journal of Financial Economics, Elsevier, vol. 133(1), pages 154-174.
    2. Likuan Qin & Vadim Linetsky, 2014. "Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery and Long-Term Pricing," Papers 1411.3075, arXiv.org, revised Sep 2015.
    3. Johan Walden, 2017. "Recovery with Unbounded Diffusion Processes," Review of Finance, European Finance Association, vol. 21(4), pages 1403-1444.
    4. Carr, Peter & Wu, Liuren, 2016. "Analyzing volatility risk and risk premium in option contracts: A new theory," Journal of Financial Economics, Elsevier, vol. 120(1), pages 1-20.
    5. Alex Backwell, 2015. "State Prices and Implementation of the Recovery Theorem," JRFM, MDPI, vol. 8(1), pages 1-15, January.
    6. Greg Orosi, 2017. "Information content of right option tails: Evidence from S&P 500 index options," Journal of Asset Management, Palgrave Macmillan, vol. 18(7), pages 516-526, December.
    7. Jihun Han & Hyungbin Park, 2014. "The Intrinsic Bounds on the Risk Premium of Markovian Pricing Kernels," Papers 1411.4606, arXiv.org, revised Sep 2015.
    8. Likuan Qin & Vadim Linetsky, 2016. "Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery, and Long-Term Pricing," Operations Research, INFORMS, vol. 64(1), pages 99-117, February.
    9. Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.
    10. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    11. Han, Jihun & Park, Hyungbin, 2015. "The intrinsic bounds on the risk premium of Markovian pricing kernels," Finance Research Letters, Elsevier, vol. 13(C), pages 36-44.

  3. Audrino, Francesco & Fengler, Matthias, 2013. "Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data," Economics Working Paper Series 1311, University of St. Gallen, School of Economics and Political Science.

    Cited by:

    1. Matthias Fengler & Winfried Koeniger & Stephan Minger, 2024. "The Transmission of Monetary Policy to the Cost of Hedging," CESifo Working Paper Series 11556, CESifo.
    2. Diego Amaya & Jean-François Bégin & Geneviève Gauthier, 2022. "The Informational Content of High-Frequency Option Prices," Management Science, INFORMS, vol. 68(3), pages 2166-2201, March.
    3. Stephen J. Taylor & Chi‐Feng Tzeng & Martin Widdicks, 2018. "Information about price and volatility jumps inferred from options prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(10), pages 1206-1226, October.
    4. Dalderop, Jeroen, 2020. "Nonparametric filtering of conditional state-price densities," Journal of Econometrics, Elsevier, vol. 214(2), pages 295-325.

  4. Francesco Audrino & Lorenzo Camponovo, 2013. "Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models," Papers 1312.1473, arXiv.org.

    Cited by:

    1. Audrino, Francesco & Camponovo, Lorenzo & Roth, Constantin, 2015. "Testing the lag structure of assets’ realized volatility dynamics," Economics Working Paper Series 1501, University of St. Gallen, School of Economics and Political Science.
    2. Marcelo C. Medeiros & Eduardo F. Mendes, 2015. "l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations," Textos para discussão 636, Department of Economics PUC-Rio (Brazil).
    3. Audrino, Francesco & Knaus, Simon, 2012. "Lassoing the HAR model: A Model Selection Perspective on Realized Volatility Dynamics," Economics Working Paper Series 1224, University of St. Gallen, School of Economics and Political Science.
    4. Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
    5. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).

  5. Corsi, Fulvio & Peluso, Stefano & Audrino, Francesco, 2012. "Missing in Asynchronicity: A Kalman-EM Approach for Multivariate Realized Covariance Estimation," Economics Working Paper Series 1202, University of St. Gallen, School of Economics and Political Science.

    Cited by:

    1. Yuta Koike, 2013. "Limit Theorems for the Pre-averaged Hayashi-Yoshida Estimator with Random Sampling," Global COE Hi-Stat Discussion Paper Series gd12-276, Institute of Economic Research, Hitotsubashi University.
    2. Carlo Campajola & Fabrizio Lillo & Daniele Tantari, 2019. "Unveiling the relation between herding and liquidity with trader lead-lag networks," Papers 1909.10807, arXiv.org, revised Mar 2020.
    3. Fengler, Matthias R. & Okhrin, Ostap, 2012. "Realized copula," SFB 649 Discussion Papers 2012-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Donelli, Nicola & Peluso, Stefano & Mira, Antonietta, 2021. "A Bayesian semiparametric vector Multiplicative Error Model," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    5. Neil Shephard & Dacheng Xiu, 2012. "Econometric analysis of multivariate realised QML: efficient positive semi-definite estimators of the covariation of equity prices," Economics Series Working Papers 604, University of Oxford, Department of Economics.
    6. Tim Bollerslev & Andrew J. Patton & Wenjing Wang, 2016. "Daily House Price Indices: Construction, Modeling, and Longer‐run Predictions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 1005-1025, September.
    7. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    8. Qu, Hui & Zhang, Yi, 2022. "Asymmetric multivariate HAR models for realized covariance matrix: A study based on volatility timing strategies," Economic Modelling, Elsevier, vol. 106(C).
    9. Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
    10. Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg & Orimar Sauri, 2017. "Positive semidefinite integrated covariance estimation, factorizations and asynchronicity," Post-Print hal-01505775, HAL.
    11. Yongheng Deng & Eric Girardin & Roselyne Joyeux, 2018. "Fundamentals and the volatility of real estate prices in China: A sequential modelling strategy," Post-Print hal-01996210, HAL.
    12. Joel Hasbrouck, 2021. "Rejoinder on: Price Discovery in High Resolution," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 465-471.
    13. Yaojie Zhang & Yu Wei & Li Liu, 2019. "Improving forecasting performance of realized covariance with extensions of HAR-RCOV model: statistical significance and economic value," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1425-1438, September.
    14. Liu, Cheng & Tang, Cheng Yong, 2014. "A quasi-maximum likelihood approach for integrated covariance matrix estimation with high frequency data," Journal of Econometrics, Elsevier, vol. 180(2), pages 217-232.
    15. Bahcivan, Hulusi & Karahan, Cenk C., 2022. "High frequency correlation dynamics and day-of-the-week effect: A score-driven approach in an emerging market stock exchange," International Review of Financial Analysis, Elsevier, vol. 80(C).
    16. Christian Brownlees & Eulàlia Nualart & Yucheng Sun, 2018. "Realized networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 986-1006, November.
    17. Yongheng Deng & Eric Girardin & Roselyne Joyeux, 2015. "Fundamentals and the Volatility of Real Estate Prices in China: A Sequential Modelling Strategy," Working Papers 222015, Hong Kong Institute for Monetary Research.
    18. Vander Elst, Harry & Veredas, David, 2014. "Disentangled jump-robust realized covariances and correlations with non-synchronous prices," DES - Working Papers. Statistics and Econometrics. WS ws142416, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Stefano Peluso & Fulvio Corsi & Antonietta Mira, 2015. "A Bayesian High-Frequency Estimator of the Multivariate Covariance of Noisy and Asynchronous Returns," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 665-697.
    20. Giuseppe Buccheri & Giacomo Bormetti & Fulvio Corsi & Fabrizio Lillo, 2018. "A Score-Driven Conditional Correlation Model for Noisy and Asynchronous Data: an Application to High-Frequency Covariance Dynamics," Papers 1803.04894, arXiv.org, revised Mar 2019.
    21. Danilo Vassallo & Giacomo Bormetti & Fabrizio Lillo, 2019. "A tale of two sentiment scales: Disentangling short-run and long-run components in multivariate sentiment dynamics," Papers 1910.01407, arXiv.org, revised Sep 2020.
    22. Calypso Herrera & Florian Krach & Anastasis Kratsios & Pierre Ruyssen & Josef Teichmann, 2020. "Denise: Deep Robust Principal Component Analysis for Positive Semidefinite Matrices," Papers 2004.13612, arXiv.org, revised Jun 2023.
    23. Michael Ho & Jack Xin, 2016. "Sparse Kalman Filtering Approaches to Covariance Estimation from High Frequency Data in the Presence of Jumps," Papers 1602.02185, arXiv.org, revised Apr 2016.
    24. Shephard, Neil & Xiu, Dacheng, 2017. "Econometric analysis of multivariate realised QML: Estimation of the covariation of equity prices under asynchronous trading," Journal of Econometrics, Elsevier, vol. 201(1), pages 19-42.
    25. Ulrich Hounyo, 2014. "Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading," CREATES Research Papers 2014-35, Department of Economics and Business Economics, Aarhus University.

  6. Audrino, Francesco & Meier, Pirmin, 2012. "Empirical pricing kernel estimation using a functional gradient descent algorithm based on splines," Economics Working Paper Series 1210, University of St. Gallen, School of Economics and Political Science.

    Cited by:

    1. Jiao, Yuhan & Liu, Qiang & Guo, Shuxin, 2021. "Pricing kernel monotonicity and term structure: Evidence from China," Journal of Banking & Finance, Elsevier, vol. 123(C).
    2. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.

  7. Audrino, Francesco & Knaus, Simon, 2012. "Lassoing the HAR model: A Model Selection Perspective on Realized Volatility Dynamics," Economics Working Paper Series 1224, University of St. Gallen, School of Economics and Political Science.

    Cited by:

    1. Audrino, Francesco & Fengler, Matthias, 2013. "Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data," Economics Working Paper Series 1311, University of St. Gallen, School of Economics and Political Science.
    2. Fengler, Matthias R. & Mammen, Enno & Vogt, Michael, 2013. "Additive modeling of realized variance: tests for parametric specifications and structural breaks," Economics Working Paper Series 1332, University of St. Gallen, School of Economics and Political Science.
    3. Ding, Shusheng & Cui, Tianxiang & Zhang, Yongmin, 2022. "Futures volatility forecasting based on big data analytics with incorporating an order imbalance effect," International Review of Financial Analysis, Elsevier, vol. 83(C).
    4. Michael Frömmel & Eyup Kadioglu, 2023. "Impact of trading hours extensions on foreign exchange volatility: intraday evidence from the Moscow exchange," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    5. Zargar, Faisal Nazir & Kumar, Dilip, 2020. "Modeling unbiased extreme value volatility estimator in presence of heterogeneity and jumps: A study with economic significance analysis," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 25-41.
    6. Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2021. "A machine learning approach to volatility forecasting," CREATES Research Papers 2021-03, Department of Economics and Business Economics, Aarhus University.
    7. Francesco Audrino & Lorenzo Camponovo, 2013. "Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models," Papers 1312.1473, arXiv.org.
    8. Audrino, Francesco & Camponovo, Lorenzo & Roth, Constantin, 2015. "Testing the lag structure of assets’ realized volatility dynamics," Economics Working Paper Series 1501, University of St. Gallen, School of Economics and Political Science.
    9. Bégin, Jean-François & Sanders, Barbara, 2024. "Benefit volatility-targeting strategies in lifetime pension pools," Insurance: Mathematics and Economics, Elsevier, vol. 118(C), pages 72-94.
    10. Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
    11. Qianjie Geng & Xianfeng Hao & Yudong Wang, 2024. "Forecasting the volatility of crude oil futures: A time‐dependent weighted least squares with regularization constraint," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 309-325, March.
    12. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    13. Lehrer, Steven & Xie, Tian & Zhang, Xinyu, 2021. "Social media sentiment, model uncertainty, and volatility forecasting," Economic Modelling, Elsevier, vol. 102(C).
    14. Niu, Zibo & Ma, Feng & Zhang, Hongwei, 2022. "The role of uncertainty measures in volatility forecasting of the crude oil futures market before and during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 112(C).
    15. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    16. Zhifeng Dai & Tingyu Li & Mi Yang, 2022. "Forecasting stock return volatility: The role of shrinkage approaches in a data‐rich environment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 980-996, August.
    17. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    18. Chanatásig-Niza, Evelyn & Ciarreta, Aitor & Zarraga, Ainhoa, 2022. "A volatility spillover analysis with realized semi(co)variances in Australian electricity markets," Energy Economics, Elsevier, vol. 111(C).
    19. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    20. Marcelo C. Medeiros & Eduardo F. Mendes, 2015. "l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations," Textos para discussão 636, Department of Economics PUC-Rio (Brazil).
    21. Liu, Guangqiang & Guo, Xiaozhu, 2022. "Forecasting stock market volatility using commodity futures volatility information," Resources Policy, Elsevier, vol. 75(C).
    22. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    23. Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    24. Alain Hecq & Marie Ternes & Ines Wilms, 2023. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Papers 2301.10592, arXiv.org, revised Nov 2024.
    25. Deev, Oleg & Plíhal, Tomáš, 2022. "How to calm down the markets? The effects of COVID-19 economic policy responses on financial market uncertainty," Research in International Business and Finance, Elsevier, vol. 60(C).
    26. Opschoor, Anne & Lucas, André, 2023. "Time-varying variance and skewness in realized volatility measures," International Journal of Forecasting, Elsevier, vol. 39(2), pages 827-840.
    27. Arnaud Dufays & Jeroen V. K. Rombouts, 2019. "Sparse Change-point HAR Models for Realized Variance," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 857-880, September.
    28. Laurent A. F. Callot & Anders B. Kock & Marcelo C. Medeiros, 2014. "Estimation and Forecasting of Large Realized Covariance Matrices and Portfolio Choice," CREATES Research Papers 2014-42, Department of Economics and Business Economics, Aarhus University.
    29. António Rua & Fátima Cardoso, 2023. "Gone with the wind: A structural decomposition of carbon emissions," Working Papers w202312, Banco de Portugal, Economics and Research Department.
    30. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    31. Taylor, Nick, 2017. "Realised variance forecasting under Box-Cox transformations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 770-785.
    32. Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
    33. Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
    34. Francesco Audrino & Jonathan Chassot, 2024. "HARd to Beat: The Overlooked Impact of Rolling Windows in the Era of Machine Learning," Papers 2406.08041, arXiv.org.
    35. Yao, Xingzhi & Izzeldin, Marwan & Li, Zhenxiong, 2019. "A novel cluster HAR-type model for forecasting realized volatility," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1318-1331.
    36. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    37. Chao Liang & Yongan Xu & Zhonglu Chen & Xiafei Li, 2023. "Forecasting China's stock market volatility with shrinkage method: Can Adaptive Lasso select stronger predictors from numerous predictors?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 3689-3699, October.
    38. Audrino, Francesco & Tetereva, Anastasija, 2019. "Sentiment spillover effects for US and European companies," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 542-567.
    39. Lyócsa, Štefan & Todorova, Neda, 2024. "Forecasting of clean energy market volatility: The role of oil and the technology sector," Energy Economics, Elsevier, vol. 132(C).
    40. Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
    41. Min Liu & Wei‐Chong Choo & Chi‐Chuan Lee & Chien‐Chiang Lee, 2023. "Trading volume and realized volatility forecasting: Evidence from the China stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 76-100, January.
    42. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    43. Tian Xie, 2019. "Forecast Bitcoin Volatility with Least Squares Model Averaging," Econometrics, MDPI, vol. 7(3), pages 1-20, September.
    44. Niu, Zibo & Liu, Yuanyuan & Gao, Wang & Zhang, Hongwei, 2021. "The role of coronavirus news in the volatility forecasting of crude oil futures markets: Evidence from China," Resources Policy, Elsevier, vol. 73(C).
    45. Richard T. Baillie & Dooyeon Cho & Seunghwa Rho, 2023. "Approximating long-memory processes with low-order autoregressions: Implications for modeling realized volatility," Empirical Economics, Springer, vol. 64(6), pages 2911-2937, June.
    46. Zongwu Cai & Chaoqun Ma & Xianhua Mi, 2020. "Realized Volatility Forecasting Based on Dynamic Quantile Model Averaging," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202016, University of Kansas, Department of Economics, revised Sep 2020.

  8. Audrino, Francesco, 2011. "Forecasting correlations during the late-2000s financial crisis: short-run component, long-run component, and structural breaks," Economics Working Paper Series 1112, University of St. Gallen, School of Economics and Political Science.

    Cited by:

    1. ROMBOUTS, Jeroen V. K. & STENTOFT, Lars & VIOLANTE, Francesco, 2012. "The value of multivariate model sophistication: an application to pricing Dow Jones Industrial Average options," LIDAM Discussion Papers CORE 2012003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Shang, Han Lin & Kearney, Fearghal, 2022. "Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1025-1049.
    3. Fresoli, Diego Eduardo, 2014. "The uncertainty of conditional returns, volatilities and correlations in DCC models," DES - Working Papers. Statistics and Econometrics. WS ws140202, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.

  9. Audrino, Francesco & Hu, Yujia, 2011. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Economics Working Paper Series 1138, University of St. Gallen, School of Economics and Political Science.

    Cited by:

    1. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02505861, HAL.
    2. Fengler, Matthias R. & Mammen, Enno & Vogt, Michael, 2013. "Additive modeling of realized variance: tests for parametric specifications and structural breaks," Economics Working Paper Series 1332, University of St. Gallen, School of Economics and Political Science.
    3. Chao Liang & Yin Liao & Feng Ma & Bo Zhu, 2022. "United States Oil Fund volatility prediction: the roles of leverage effect and jumps," Empirical Economics, Springer, vol. 62(5), pages 2239-2262, May.
    4. Fengler, Matthias R. & Okhrin, Ostap, 2012. "Realized copula," SFB 649 Discussion Papers 2012-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2020. "The contribution of intraday jumps to forecasting the density of returns," Post-Print halshs-02505861, HAL.
    6. Dahmene, Meriam & Boughrara, Adel & Slim, Skander, 2021. "Nonlinearity in stock returns: Do risk aversion, investor sentiment and, monetary policy shocks matter?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 676-699.
    7. Chao Liang & Yan Li & Feng Ma & Yaojie Zhang, 2022. "Forecasting international equity market volatility: A new approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1433-1457, November.
    8. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    9. Xu Gong & Boqiang Lin, 2021. "Effects of structural changes on the prediction of downside volatility in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1124-1153, July.
    10. Wang, Yajing & Liang, Fang & Wang, Tianyi & Huang, Zhuo, 2020. "Does measurement error matter in volatility forecasting? Empirical evidence from the Chinese stock market," Economic Modelling, Elsevier, vol. 87(C), pages 148-157.
    11. Fengler, Matthias R. & Gisler, Katja I. M., 2014. "A variance spillover analysis without covariances: what do we miss?," Economics Working Paper Series 1409, University of St. Gallen, School of Economics and Political Science.
    12. Li, Xiafei & Liao, Yin & Lu, Xinjie & Ma, Feng, 2022. "An oil futures volatility forecast perspective on the selection of high-frequency jump tests," Energy Economics, Elsevier, vol. 116(C).
    13. Gong, Xu & Lin, Boqiang, 2017. "Forecasting the good and bad uncertainties of crude oil prices using a HAR framework," Energy Economics, Elsevier, vol. 67(C), pages 315-327.
    14. Gbenga Ibikunle & Vito Mollica & Qiao Sun, 2021. "Jumps in foreign exchange spot rates and the informational efficiency of currency forwards," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(8), pages 1201-1219, August.
    15. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    16. Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
    17. Xu, Yanyan & Liu, Jing & Ma, Feng & Chu, Jielei, 2024. "Liquidity and realized volatility prediction in Chinese stock market: A time-varying transitional dynamic perspective," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 543-560.
    18. Maki, Daiki, 2024. "Forecasting downside and upside realized volatility: The role of asymmetric information," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
    19. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
    20. Jerome L Kreuser & Didier Sornette, 2017. "Super-Exponential RE Bubble Model with Efficient Crashes," Swiss Finance Institute Research Paper Series 17-33, Swiss Finance Institute.
    21. Papantonis Ioannis & Rompolis Leonidas S. & Tzavalis Elias & Agapitos Orestis, 2023. "Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 171-198, April.
    22. Maki, Daiki & Ota, Yasushi, 2021. "Impacts of asymmetry on forecasting realized volatility in Japanese stock markets," Economic Modelling, Elsevier, vol. 101(C).
    23. Feng Ma & M. I. M. Wahab & Julien Chevallier & Ziyang Li, 2023. "A tug of war of forecasting the US stock market volatility: Oil futures overnight versus intraday information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 60-75, January.
    24. Chao Liang & Feng Ma & Lu Wang & Qing Zeng, 2021. "The information content of uncertainty indices for natural gas futures volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1310-1324, November.
    25. Liang, Chao & Li, Yan & Ma, Feng & Wei, Yu, 2021. "Global equity market volatilities forecasting: A comparison of leverage effects, jumps, and overnight information," International Review of Financial Analysis, Elsevier, vol. 75(C).
    26. Xu, Yanyan & Huang, Dengshi & Ma, Feng & Qiao, Gaoxiu, 2019. "The heterogeneous impact of liquidity on volatility in Chinese stock index futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 73-85.
    27. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    28. Gong, Xu & Lin, Boqiang, 2018. "Structural changes and out-of-sample prediction of realized range-based variance in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 27-39.
    29. Vitali Alexeev & Mardi Dungey & Wenying Yao, 2016. "Continuous and Jump Betas: Implications for Portfolio Diversification," Econometrics, MDPI, vol. 4(2), pages 1-15, June.
    30. Liang, Chao & Luo, Qin & Li, Yan & Huynh, Luu Duc Toan, 2023. "Global financial stress index and long-term volatility forecast for international stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    31. Daiki Maki & Yasushi Ota, 2020. "The impacts of asymmetry on modeling and forecasting realized volatility in Japanese stock markets," Papers 2006.00158, arXiv.org.
    32. Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.
    33. Song, Yuping & Huang, Jiefei & Zhang, Qichao & Xu, Yang, 2024. "Heterogeneity effect of positive and negative jumps on the realized volatility: Evidence from China," Economic Modelling, Elsevier, vol. 136(C).
    34. Maki, Daiki, 2024. "Asymmetric effect of trading volume on realized volatility," International Review of Economics & Finance, Elsevier, vol. 94(C).
    35. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.

  10. Francesco Audrino & Marcelo Cunha Medeiros, 2010. "Modeling and Forecasting Short-term Interest Rates: The Benefits of Smooth Regimes, Macroeconomic Variables, and Bagging," Textos para discussão 570, Department of Economics PUC-Rio (Brazil).

    Cited by:

    1. Francesco Audrino, 2012. "What Drives Short Rate Dynamics? A Functional Gradient Descent Approach," Computational Economics, Springer;Society for Computational Economics, vol. 39(3), pages 315-335, March.
    2. Li, Dongxin & Zhang, Li & Li, Lihong, 2023. "Forecasting stock volatility with economic policy uncertainty: A smooth transition GARCH-MIDAS model," International Review of Financial Analysis, Elsevier, vol. 88(C).
    3. Audrino, Francesco & Serwart, Jan, 2024. "Yield curve trading strategies exploiting sentiment data," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    4. Tae-Hwy Lee & Eric Hillebrand & Marcelo Medeiros, 2014. "Bagging Constrained Equity Premium Predictors," Working Papers 201421, University of California at Riverside, Department of Economics, revised Feb 2013.
    5. Tae-Hwy Lee & Huiyu Huang, 2014. "Forecasting Value-at-Risk Using High Frequency Information," Working Papers 201409, University of California at Riverside, Department of Economics.
    6. Luo, Jiawen & Klein, Tony & Walther, Thomas & Ji, Qiang, 2021. "Forecasting Realized Volatility of Crude Oil Futures Prices based on Machine Learning," QBS Working Paper Series 2021/04, Queen's University Belfast, Queen's Business School.
    7. Erik Hillebrand & Tae-Hwy Lee & Marcelo Cunha Medeiros, 2012. "Let´s do it again: bagging equity premium predictors," Textos para discussão 604, Department of Economics PUC-Rio (Brazil).
    8. Yang, Ke & Tian, Fengping & Chen, Langnan & Li, Steven, 2017. "Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 276-291.
    9. Xiaojing Xi & Rogemar Mamon, 2014. "Capturing the Regime-Switching and Memory Properties of Interest Rates," Computational Economics, Springer;Society for Computational Economics, vol. 44(3), pages 307-337, October.

  11. Fulvio Corsi & Francesco Audrino, 2008. "Realized Covariance Tick-by-Tick in Presence of Rounded Time Stamps and General Microstructure Effects," University of St. Gallen Department of Economics working paper series 2008 2008-04, Department of Economics, University of St. Gallen.

    Cited by:

    1. Márcio Gomes Pinto Garcia & Marcelo Cunha Medeiros & Francisco Eduardo de Luna e Almeida Santos, 2014. "Economic gains of realized volatility in the Brazilian stock market," Brazilian Review of Finance, Brazilian Society of Finance, vol. 12(3), pages 319-349.
    2. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    3. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    4. Fresoli, Diego Eduardo, 2014. "The uncertainty of conditional returns, volatilities and correlations in DCC models," DES - Working Papers. Statistics and Econometrics. WS ws140202, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Corsi, Fulvio & Peluso, Stefano & Audrino, Francesco, 2012. "Missing in Asynchronicity: A Kalman-EM Approach for Multivariate Realized Covariance Estimation," Economics Working Paper Series 1202, University of St. Gallen, School of Economics and Political Science.
    6. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    7. Arnerić, Josip & Matković, Mario & Sorić, Petar, 2019. "Comparison of range-based volatility estimators against integrated volatility in European emerging markets," Finance Research Letters, Elsevier, vol. 28(C), pages 118-124.
    8. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    9. Arnab Chakrabarti & Rituparna Sen, 2023. "Copula Estimation for Nonsynchronous Financial Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 116-149, May.
    10. Mike Buckle & Jing Chen & Julian Williams, 2014. "How Predictable Are Equity Covariance Matrices? Evidence from High‐Frequency Data for Four Markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(7), pages 542-557, November.

  12. Fulvio Corsi & Francesco Audrino, 2008. "Modeling Tick-by-Tick Realized Correlations," University of St. Gallen Department of Economics working paper series 2008 2008-05, Department of Economics, University of St. Gallen.

    Cited by:

    1. Aslanidis, Nektarios & Christiansen, Charlotte, 2012. "Smooth transition patterns in the realized stock–bond correlation," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 454-464.
    2. Harvey, A. & Palumbo, D., 2019. "Score-Driven Models for Realized Volatility," Cambridge Working Papers in Economics 1950, Faculty of Economics, University of Cambridge.
    3. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    4. Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2021. "A machine learning approach to volatility forecasting," CREATES Research Papers 2021-03, Department of Economics and Business Economics, Aarhus University.
    5. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    6. Liu, Wei & Garrett, Ian, 2023. "Regime-dependent effects of macroeconomic uncertainty on realized volatility in the U.S. stock market," Economic Modelling, Elsevier, vol. 128(C).
    7. Luo, Jiawen & Chen, Langnan, 2020. "Realized volatility forecast with the Bayesian random compressed multivariate HAR model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 781-799.
    8. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
    9. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    10. Dark, Jonathan, 2024. "An adaptive long memory conditional correlation model," Journal of Empirical Finance, Elsevier, vol. 75(C).
    11. Gribisch, Bastian, 2013. "A latent dynamic factor approach to forecasting multivariate stock market volatility," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79823, Verein für Socialpolitik / German Economic Association.
    12. Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2011. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-812, CIRJE, Faculty of Economics, University of Tokyo.
    13. Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    14. Yaojie Zhang & Yu Wei & Li Liu, 2019. "Improving forecasting performance of realized covariance with extensions of HAR-RCOV model: statistical significance and economic value," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1425-1438, September.
    15. Roxana Halbleib & Valeri Voev, 2011. "Forecasting Covariance Matrices: A Mixed Frequency Approach," CREATES Research Papers 2011-03, Department of Economics and Business Economics, Aarhus University.
    16. Paolo Gorgi & Siem Jan Koopman, 2020. "Beta observation-driven models with exogenous regressors: a joint analysis of realized correlation and leverage effects," Tinbergen Institute Discussion Papers 20-004/III, Tinbergen Institute.
    17. Dark, Jonathan, 2018. "Multivariate models with long memory dependence in conditional correlation and volatility," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 162-180.
    18. Jiawen Luo & Langnan Chen, 2019. "Multivariate realized volatility forecasts of agricultural commodity futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(12), pages 1565-1586, December.
    19. Philip Bertram & Robinson Kruse & Philipp Sibbertsen, 2013. "Fractional integration versus level shifts: the case of realized asset correlations," Statistical Papers, Springer, vol. 54(4), pages 977-991, November.
    20. Boudt, Kris & Cornelissen, Jonathan & Croux, Christophe, 2012. "Jump robust daily covariance estimation by disentangling variance and correlation components," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 2993-3005.
    21. Asgharian, Hossein & Christiansen, Charlotte & Hou, Ai Jun, 2023. "The effect of uncertainty on stock market volatility and correlation," Journal of Banking & Finance, Elsevier, vol. 154(C).
    22. Markopoulou, Chrysi E. & Skintzi, Vasiliki D. & Refenes, Apostolos-Paul N., 2016. "Realized hedge ratio: Predictability and hedging performance," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 121-133.
    23. Roxana Halbleib & Valeri Voev, 2016. "Forecasting Covariance Matrices: A Mixed Approach," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 383-417.
    24. Konstantinos Gkillas & Christoforos Konstantatos & Costas Siriopoulos, 2021. "Uncertainty Due to Infectious Diseases and Stock–Bond Correlation," Econometrics, MDPI, vol. 9(2), pages 1-18, April.

  13. Francesco Audrino & Marcelo C. Medeiros, 2008. "Smooth Regimes, Macroeconomic Variables, and Bagging for the Short-Term Interest Rate Process," University of St. Gallen Department of Economics working paper series 2008 2008-16, Department of Economics, University of St. Gallen.

    Cited by:

    1. Francesco Audrino & Kameliya Filipova, 2009. "Yield Curve Predictability, Regimes, and Macroeconomic Information: A Data-Driven Approach," University of St. Gallen Department of Economics working paper series 2009 2009-10, Department of Economics, University of St. Gallen.

  14. Francesco Audrino & Fabio Trojani, 2007. "Accurate Short-Term Yield Curve Forecasting using Functional Gradient Descent," University of St. Gallen Department of Economics working paper series 2007 2007-24, Department of Economics, University of St. Gallen.

    Cited by:

    1. Teresa Buchen & Klaus Wohlrabe, 2013. "Assessing the Macroeconomic Forecasting Performance of Boosting - Evidence for the United States, the Euro Area, and Germany," CESifo Working Paper Series 4148, CESifo.
    2. Francesco Audrino, 2012. "What Drives Short Rate Dynamics? A Functional Gradient Descent Approach," Computational Economics, Springer;Society for Computational Economics, vol. 39(3), pages 315-335, March.
    3. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    4. Emrich Eike & Pierdzioch Christian, 2016. "Public Goods, Private Consumption, and Human Capital: Using Boosted Regression Trees to Model Volunteer Labour Supply," Review of Economics, De Gruyter, vol. 67(3), pages 263-283, December.
    5. Emrich, Eike & Pierdzioch, Christian, 2015. "Public goods, private consumption, and human-capital formation: On the economics of volunteer labour supply," Working Papers of the European Institute for Socioeconomics 14, European Institute for Socioeconomics (EIS), Saarbrücken.

  15. Fulvio Corsi & Francesco Audrino, 2007. "Realized Correlation Tick-by-Tick," University of St. Gallen Department of Economics working paper series 2007 2007-02, Department of Economics, University of St. Gallen.

    Cited by:

    1. Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Post-Print hal-00732537, HAL.
    2. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    3. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    4. Ingmar Nolte & Valeri Voev, 2008. "Estimating High-Frequency Based (Co-) Variances: A Unified Approach," CREATES Research Papers 2008-31, Department of Economics and Business Economics, Aarhus University.
    5. Fresoli, Diego Eduardo, 2014. "The uncertainty of conditional returns, volatilities and correlations in DCC models," DES - Working Papers. Statistics and Econometrics. WS ws140202, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Fabio Trojani & Francesco Audrino, 2005. "A general multivariate threshold GARCH model with dynamic conditional correlations," University of St. Gallen Department of Economics working paper series 2005 2005-04, Department of Economics, University of St. Gallen.
    7. William H. Press, 2023. "Optimal Cross-Correlation Estimates from Asynchronous Tick-by-Tick Trading Data," Papers 2303.16153, arXiv.org.
    8. Münnix, Michael C. & Schäfer, Rudi & Guhr, Thomas, 2010. "Compensating asynchrony effects in the calculation of financial correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 767-779.
    9. Vortelinos, Dimitrios I., 2010. "The properties of realized correlation: Evidence from the French, German and Greek equity markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 273-290, August.
    10. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 58-68, January.

  16. Francesco Audrino & Peter Bühlmann, 2007. "Splines for Financial Volatility," University of St. Gallen Department of Economics working paper series 2007 2007-11, Department of Economics, University of St. Gallen.

    Cited by:

    1. Meister, Alexander & Kreiß, Jens-Peter, 2016. "Statistical inference for nonparametric GARCH models," Stochastic Processes and their Applications, Elsevier, vol. 126(10), pages 3009-3040.
    2. Christian Francq & Jean-Michel Zakoïan, 2013. "Optimal predictions of powers of conditionally heteroscedastic processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 345-367, March.
    3. Cristina Amado & Annastiina Silvennoinen & Timo Teräsvirta, 2018. "Models with Multiplicative Decomposition of Conditional Variances and Correlations," CREATES Research Papers 2018-14, Department of Economics and Business Economics, Aarhus University.
    4. Wilson Ye Chen & Richard H. Gerlach, 2017. "Semiparametric GARCH via Bayesian model averaging," Papers 1708.07587, arXiv.org.
    5. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    6. Yujiao Yang & Yuhang Xu & Qiongxia Song, 2012. "Spline confidence bands for variance functions in nonparametric time series regressive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 699-714.
    7. Hiroyuki Kawakatsu, 2022. "Local projection variance impulse response," Empirical Economics, Springer, vol. 62(3), pages 1219-1244, March.
    8. Souhaib Ben Taieb & Rob J Hyndman, 2014. "Boosting multi-step autoregressive forecasts," Monash Econometrics and Business Statistics Working Papers 13/14, Monash University, Department of Econometrics and Business Statistics.
    9. VAN BELLEGEM, Sébastien, 2011. "Locally stationary volatility modelling," LIDAM Discussion Papers CORE 2011041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Barrow, Devon K. & Crone, Sven F., 2016. "A comparison of AdaBoost algorithms for time series forecast combination," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1103-1119.
    11. Hugh Christensen & Simon Godsill & Richard E Turner, 2020. "Hidden Markov Models Applied To Intraday Momentum Trading With Side Information," Papers 2006.08307, arXiv.org.
    12. Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 99-122, January.
    13. Audrino, Francesco & Meier, Pirmin, 2012. "Empirical pricing kernel estimation using a functional gradient descent algorithm based on splines," Economics Working Paper Series 1210, University of St. Gallen, School of Economics and Political Science.
    14. Ozer Ozdemir & Memmedaga Memmedli & Akhlitdin Nizamitdinov, 2013. "ANN Models and Bayesian Spline Models for Analysis of Exchange Rates and Gold Price," International Econometric Review (IER), Econometric Research Association, vol. 5(2), pages 53-69, September.

  17. Fabio Trojani & Francesco Audrino, 2005. "A general multivariate threshold GARCH model with dynamic conditional correlations," University of St. Gallen Department of Economics working paper series 2005 2005-04, Department of Economics, University of St. Gallen.

    Cited by:

    1. Rezitis Anthony N & Stavropoulos Konstantinos S, 2011. "Price Transmission and Volatility in the Greek Broiler Sector: A Threshold Cointegration Analysis," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 9(1), pages 1-37, July.
    2. Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024. "Asymmetric Models for Realized Covariances," LIDAM Discussion Papers ISBA 2024022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Boudt, Kris & Daníelsson, Jón & Laurent, Sébastien, 2013. "Robust forecasting of dynamic conditional correlation GARCH models," International Journal of Forecasting, Elsevier, vol. 29(2), pages 244-257.
    4. ROMBOUTS, Jeroen V. K. & STENTOFT, Lars & VIOLANTE, Francesco, 2012. "The value of multivariate model sophistication: an application to pricing Dow Jones Industrial Average options," LIDAM Discussion Papers CORE 2012003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
    6. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    7. Jian, Zhihong & Deng, Pingjun & Zhu, Zhican, 2018. "High-dimensional covariance forecasting based on principal component analysis of high-frequency data," Economic Modelling, Elsevier, vol. 75(C), pages 422-431.
    8. Fulvio Corsi & Francesco Audrino, 2012. "Realized Covariance Tick-by-Tick in Presence of Rounded Time Stamps and General Microstructure Effects," Journal of Financial Econometrics, Oxford University Press, vol. 10(4), pages 591-616, September.
    9. Chang, C-L. & McAleer, M.J. & Tansuchat, R., 2009. "Modelling conditional correlations for risk diversification in crude oil markets," Econometric Institute Research Papers EI 2009-11, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    11. Paolo Gorgi & Siem Jan Koopman, 2020. "Beta observation-driven models with exogenous regressors: a joint analysis of realized correlation and leverage effects," Tinbergen Institute Discussion Papers 20-004/III, Tinbergen Institute.
    12. Sarantis Tsiaplias & Chew Lian Chua, 2013. "A Multivariate GARCH Model Incorporating the Direct and Indirect Transmission of Shocks," Econometric Reviews, Taylor & Francis Journals, vol. 32(2), pages 244-271, February.
    13. Stefano Peluso & Fulvio Corsi & Antonietta Mira, 2015. "A Bayesian High-Frequency Estimator of the Multivariate Covariance of Noisy and Asynchronous Returns," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 665-697.
    14. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    15. Kuruppuarachchi, Duminda & Premachandra, I.M., 2016. "Information spillover dynamics of the energy futures market sector: A novel common factor approach," Energy Economics, Elsevier, vol. 57(C), pages 277-294.
    16. Li, Johnny Siu-Hang & Ng, Andrew C.Y. & Chan, Wai-Sum, 2015. "Managing financial risk in Chinese stock markets: Option pricing and modeling under a multivariate threshold autoregression," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 217-230.
    17. Kang‐Soek Lee & Richard A. Werner, 2023. "Are lower interest rates really associated with higher growth? New empirical evidence on the interest rate thesis from 19 countries," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 3960-3975, October.
    18. So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.

  18. Francesco Audrino & Enrico De Giorgi, "undated". "Beta Regimes for the Yield Curve," IEW - Working Papers 244, Institute for Empirical Research in Economics - University of Zurich.

    Cited by:

    1. Theofanis Archontakis & Wolfgang Lemke, 2008. "Threshold Dynamics of Short‐term Interest Rates: Empirical Evidence and Implications for the Term Structure," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 37(1), pages 75-117, February.
    2. Wolfgang Lemke & Theofanis Archontakis, 2008. "Bond pricing when the short-term interest rate follows a threshold process," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 811-822.
    3. Francesco Audrino, 2012. "What Drives Short Rate Dynamics? A Functional Gradient Descent Approach," Computational Economics, Springer;Society for Computational Economics, vol. 39(3), pages 315-335, March.
    4. Fehr, Ernst & Fischbacher, Urs & Kosfeld, Michael, 2005. "Neuroeconomic Foundation of Trust and Social Preferences," CEPR Discussion Papers 5127, C.E.P.R. Discussion Papers.
    5. Tania Singer & Ernst Fehr, 2005. "The Neuroeconomics of Mind Reading and Empathy," American Economic Review, American Economic Association, vol. 95(2), pages 340-345, May.
    6. Filipova, Kameliya & Audrino, Francesco & De Giorgi, Enrico, 2014. "Monetary policy regimes: Implications for the yield curve and bond pricing," Journal of Financial Economics, Elsevier, vol. 113(3), pages 427-454.
    7. Francesco Audrino & Kameliya Filipova, 2009. "Yield Curve Predictability, Regimes, and Macroeconomic Information: A Data-Driven Approach," University of St. Gallen Department of Economics working paper series 2009 2009-10, Department of Economics, University of St. Gallen.
    8. Francesco Audrino & Marcelo C. Medeiros, 2008. "Smooth Regimes, Macroeconomic Variables, and Bagging for the Short-Term Interest Rate Process," University of St. Gallen Department of Economics working paper series 2008 2008-16, Department of Economics, University of St. Gallen.
    9. Fehr, Ernst & Falk, Armin & Zehnder, Christian, 2005. "The Behavioural Effects of Minimum Wages," CEPR Discussion Papers 5115, C.E.P.R. Discussion Papers.
    10. Jaramillo, Laura & Weber, Anke, 2013. "Bond yields in emerging economies: It matters what state you are in," Emerging Markets Review, Elsevier, vol. 17(C), pages 169-185.
    11. Francesco Audrino & Marcelo C. Medeiros, 2011. "Modeling and forecasting short‐term interest rates: The benefits of smooth regimes, macroeconomic variables, and bagging," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 999-1022, September.

Articles

  1. Ballinari, Daniele & Audrino, Francesco & Sigrist, Fabio, 2022. "When does attention matter? The effect of investor attention on stock market volatility around news releases," International Review of Financial Analysis, Elsevier, vol. 82(C).

    Cited by:

    1. Hoque, Mohammad Enamul & Billah, Mabruk & Alam, Md Rafayet & Lucey, Brian, 2024. "Does news related to digital economy and central bank digital currency affect digital economy ETFs? Evidence from TVP-VAR connectedness and wavelet local multiple correlation analyses," Global Finance Journal, Elsevier, vol. 61(C).
    2. Lyócsa, Štefan & Halousková, Martina & Haugom, Erik, 2023. "The US banking crisis in 2023: Intraday attention and price variation of banks at risk," Finance Research Letters, Elsevier, vol. 57(C).

  2. Francesco Audrino & Robert Huitema & Markus Ludwig, 2021. "An Empirical Implementation of the Ross Recovery Theorem as a Prediction Device [Nonparametric Option Pricing under Shape Restrictions]," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 291-312.

    Cited by:

    1. Sanford, Anthony, 2024. "Information content of option prices: Comparing analyst forecasts to option-based forecasts," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    2. Yuta Hibiki & Takuya Kiriu & Norio Hibiki, 2024. "Optimal Currency Portfolio with Implied Return Distribution in the Mean-Variance Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(2), pages 251-283, June.

  3. Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.

    Cited by:

    1. Ying Wang & Hongwei Zhang & Wang Gao & Cai Yang, 2023. "Spillover effects from news to travel and leisure stocks during the COVID-19 pandemic: Evidence from the time and frequency domains," Tourism Economics, , vol. 29(2), pages 460-487, March.
    2. Lansing, Kevin J. & LeRoy, Stephen F. & Ma, Jun, 2022. "Examining the sources of excess return predictability: Stochastic volatility or market inefficiency?," Journal of Economic Behavior & Organization, Elsevier, vol. 197(C), pages 50-72.
    3. Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2021. "A machine learning approach to volatility forecasting," CREATES Research Papers 2021-03, Department of Economics and Business Economics, Aarhus University.
    4. Zhu, Xuehong & Niu, Zibo & Zhang, Hongwei & Huang, Jiaxin & Zuo, Xuguang, 2022. "Can gold and bitcoin hedge against the COVID-19 related news sentiment risk? New evidence from a NARDL approach," Resources Policy, Elsevier, vol. 79(C).
    5. Lyócsa, Štefan & Baumöhl, Eduard & Vŷrost, Tomáš, 2021. "YOLO trading: Riding with the herd during the GameStop episode," EconStor Preprints 230679, ZBW - Leibniz Information Centre for Economics.
    6. Chong Zhang & Xinyi Liu & Zhongmou Zhang & Mingyu Jin & Lingyao Li & Zhenting Wang & Wenyue Hua & Dong Shu & Suiyuan Zhu & Xiaobo Jin & Sujian Li & Mengnan Du & Yongfeng Zhang, 2024. "When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments," Papers 2407.18957, arXiv.org, revised Sep 2024.
    7. Reyes, Tomas & Batista, Julian A. & Chacon, Alvaro & Martinez, Diego & Kausel, Edgar E., 2023. "Attention-driven reaction to extreme earnings surprises," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 230-248.
    8. Ma, Feng & Wang, Jiqian & Wahab, M.I.M. & Ma, Yuanhui, 2023. "Stock market volatility predictability in a data-rich world: A new insight," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1804-1819.
    9. Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
    10. Panpan Zhu & Qingjie Zhou & Yinpeng Zhang, 2024. "Investor attention and consumer price index inflation rate: Evidence from the United States," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    11. Andrieş, Alin Marius & Ongena, Steven & Sprincean, Nicu & Tunaru, Radu, 2022. "Risk spillovers and interconnectedness between systemically important institutions," Journal of Financial Stability, Elsevier, vol. 58(C).
    12. Bolin Lei & Yuping Song, 2024. "Volatility forecasting for stock market incorporating media reports, investors' sentiment, and attention based on MTGNN model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1706-1730, August.
    13. Jaydip Sen & Subhasis Dasgupta, 2023. "Portfolio Optimization: A Comparative Study," Papers 2307.05048, arXiv.org.
    14. Rui Liu & Jiayou Liang & Haolong Chen & Yujia Hu, 2024. "Analyst Reports and Stock Performance: Evidence from the Chinese Market," Papers 2411.08726, arXiv.org.
    15. Martina Halouskov'a & Daniel Stav{s}ek & Mat'uv{s} Horv'ath, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Papers 2205.05985, arXiv.org, revised Aug 2022.
    16. Wenting Liu & Zhaozhong Gui & Guilin Jiang & Lihua Tang & Lichun Zhou & Wan Leng & Xulong Zhang & Yujiang Liu, 2023. "Stock Volatility Prediction Based on Transformer Model Using Mixed-Frequency Data," Papers 2309.16196, arXiv.org.
    17. Ballinari, Daniele & Audrino, Francesco & Sigrist, Fabio, 2022. "When does attention matter? The effect of investor attention on stock market volatility around news releases," International Review of Financial Analysis, Elsevier, vol. 82(C).
    18. Ballinari, Daniele & Behrendt, Simon, 2020. "Structural breaks in online investor sentiment: A note on the nonstationarity of financial chatter," Finance Research Letters, Elsevier, vol. 35(C).
    19. Audrino, Francesco & Serwart, Jan, 2024. "Yield curve trading strategies exploiting sentiment data," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    20. Roland Füss & Massimo Guidolin & Christian Koeppel, 2019. "Sentiment Risk Premia In The Cross-Section of Global Equity," Working Papers on Finance 1913, University of St. Gallen, School of Finance, revised May 2020.
    21. Qing Liu & Hosung Son, 2024. "Methods for aggregating investor sentiment from social media," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-22, December.
    22. Ding, Hui & Huang, Yisu & Wang, Jiqian, 2023. "Have the predictability of oil changed during the COVID-19 pandemic: Evidence from international stock markets," International Review of Financial Analysis, Elsevier, vol. 87(C).
    23. Caporale, Guglielmo Maria & Kyriacou, Kyriacos & Spagnolo, Nicola, 2023. "Aggregate insider trading and stock market volatility in the UK," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
    24. Michele Costola & Michael Donadelli & Luca Gerotto & Ivan Gufler, 2022. "Global risks, the macroeconomy, and asset prices," Empirical Economics, Springer, vol. 63(5), pages 2357-2388, November.
    25. Halousková, Martina & Stašek, Daniel & Horváth, Matúš, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Finance Research Letters, Elsevier, vol. 50(C).
    26. Anastasiou, Dimitris & Ballis, Antonis & Drakos, Konstantinos, 2022. "Constructing a positive sentiment index for COVID-19: Evidence from G20 stock markets," International Review of Financial Analysis, Elsevier, vol. 81(C).
    27. Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    28. Huang, Yisu & Xu, Weiju & Huang, Dengshi & Zhao, Chenchen, 2023. "Chinese crude oil futures volatility and sustainability: An uncertainty indices perspective," Resources Policy, Elsevier, vol. 80(C).
    29. Vladimir Pyrlik & Pavel Elizarov & Aleksandra Leonova, 2021. "Forecasting Realized Volatility Using Machine Learning and Mixed-Frequency Data (the Case of the Russian Stock Market)," CERGE-EI Working Papers wp713, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    30. Gaoshan Wang & Guangjin Yu & Xiaohong Shen, 2020. "The Effect of Online Investor Sentiment on Stock Movements: An LSTM Approach," Complexity, Hindawi, vol. 2020, pages 1-11, December.
    31. Izzeldin, Marwan & Muradoğlu, Yaz Gülnur & Pappas, Vasileios & Sivaprasad, Sheeja, 2021. "The impact of Covid-19 on G7 stock markets volatility: Evidence from a ST-HAR model," International Review of Financial Analysis, Elsevier, vol. 74(C).
    32. Weiguo Zhang & Xue Gong & Chao Wang & Xin Ye, 2021. "Predicting stock market volatility based on textual sentiment: A nonlinear analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1479-1500, December.
    33. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    34. Qing Liu & Hosung Son, 2024. "Data selection and collection for constructing investor sentiment from social media," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    35. Mikhaylov, Dmitry, 2023. "Macroeconomic Forecasting with the Use of News Data," Working Papers w20220250, Russian Presidential Academy of National Economy and Public Administration.
    36. Filip, Angela Maria & Pochea, Maria Miruna, 2023. "Intentional and spurious herding behavior: A sentiment driven analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 38(C).
    37. Lin Wang & Wuyue An & Feng‐Ting Li, 2024. "Text‐based corn futures price forecasting using improved neural basis expansion network," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2042-2063, September.
    38. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2024. "Machine-learning stock market volatility: Predictability, drivers, and economic value," International Review of Financial Analysis, Elsevier, vol. 94(C).
    39. Lyócsa, Štefan & Baumöhl, Eduard & Výrost, Tomáš & Molnár, Peter, 2020. "Fear of the coronavirus and the stock markets," EconStor Preprints 219336, ZBW - Leibniz Information Centre for Economics.
    40. Yang Gao & Chengjie Zhao & Bianxia Sun & Wandi Zhao, 2022. "Effects of investor sentiment on stock volatility: new evidences from multi-source data in China’s green stock markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-30, December.
    41. Wang, Gaoshan & Yu, Guangjin & Shen, Xiaohong, 2021. "The effect of online environmental news on green industry stocks: The mediating role of investor sentiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    42. Liu, Yuanyuan & Niu, Zibo & Suleman, Muhammad Tahir & Yin, Libo & Zhang, Hongwei, 2022. "Forecasting the volatility of crude oil futures: The role of oil investor attention and its regime switching characteristics under a high-frequency framework," Energy, Elsevier, vol. 238(PA).
    43. Cheraghali, Hamid & Høydal, Hannah & Lysebo, Caroline & Molnár, Peter, 2023. "Consumer attention and company performance: Evidence from luxury companies," Finance Research Letters, Elsevier, vol. 58(PA).
    44. Fernando Díaz & Pablo A Henríquez, 2021. "Social sentiment segregation: Evidence from Twitter and Google Trends in Chile during the COVID-19 dynamic quarantine strategy," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-29, July.
    45. Anca Ioana, Iacob (Troto), 2021. "Investor Sentiment - Theoretical Aspects And Practical Conclusions, In The Context Of The Pandemic Crisis," Management Strategies Journal, Constantin Brancoveanu University, vol. 51(1), pages 122-128.
    46. Bickley, Steve J. & Brumpton, Martin & Chan, Ho Fai & Colthurst, Richard & Torgler, Benno, 2021. "The stabilizing effect of social distancing: Cross-country differences in financial market response to COVID-19 pandemic policies," Research in International Business and Finance, Elsevier, vol. 58(C).
    47. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    48. Qingjie Zhou & Panpan Zhu & Yinpeng Zhang, 2023. "Contagion Spillover from Bitcoin to Carbon Futures Pricing: Perspective from Investor Attention," Energies, MDPI, vol. 16(2), pages 1-22, January.
    49. Wang, Ping & Han, Wei & Huang, Chengcheng & Duong, Duy, 2022. "Forecasting realised volatility from search volume and overnight sentiment: Evidence from China," Research in International Business and Finance, Elsevier, vol. 62(C).
    50. Lyócsa, Štefan & Plíhal, Tomáš, 2022. "Russia’s ruble during the onset of the Russian invasion of Ukraine in early 2022: The role of implied volatility and attention," Finance Research Letters, Elsevier, vol. 48(C).
    51. Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
    52. Doris Chenguang Wu & Shiteng Zhong & Richard T R Qiu & Ji Wu, 2022. "Are customer reviews just reviews? Hotel forecasting using sentiment analysis," Tourism Economics, , vol. 28(3), pages 795-816, May.
    53. Abakah, Emmanuel Joel Aikins & Adeabah, David & Tiwari, Aviral Kumar & Abdullah, Mohammad, 2023. "Effect of Russia–Ukraine war sentiment on blockchain and FinTech stocks," International Review of Financial Analysis, Elsevier, vol. 90(C).
    54. Francesco Audrino & Jonathan Chassot, 2024. "HARd to Beat: The Overlooked Impact of Rolling Windows in the Era of Machine Learning," Papers 2406.08041, arXiv.org.
    55. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    56. Yongan Xu & Jianqiong Wang & Zhonglu Chen & Chao Liang, 2023. "Sentiment indices and stock returns: Evidence from China," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 1063-1080, January.
    57. Tim Matthies & Thomas Lohden & Stephan Leible & Jun-Patrick Raabe, 2023. "To the Moon: Analyzing Collective Trading Events on the Wings of Sentiment Analysis," Papers 2308.09968, arXiv.org.
    58. v{S}tefan Ly'ocsa & Tom'av{s} Pl'ihal, 2022. "Russia's Ruble during the onset of the Russian invasion of Ukraine in early 2022: The role of implied volatility and attention," Papers 2205.09179, arXiv.org.
    59. Jaydip Sen & Abhishek Dutta & Sidra Mehtab, 2021. "Stock Portfolio Optimization Using a Deep Learning LSTM Model," Papers 2111.04709, arXiv.org.
    60. Naimoli, Antonio, 2022. "The information content of sentiment indices for forecasting Value at Risk and Expected Shortfall in equity markets," MPRA Paper 112588, University Library of Munich, Germany.
    61. Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
    62. Yan Li & Weiping Li, 2021. "Empirical Analysis of MSCI China A-Shares," JRFM, MDPI, vol. 14(11), pages 1-25, October.
    63. Zhang, Zhikai & Wang, Yudong & Zhang, Yaojie & Wang, Qunwei, 2024. "Forecasting carbon prices under diversified attention: A dynamic model averaging approach with common factors," Energy Economics, Elsevier, vol. 133(C).
    64. Xiaohong Shen & Gaoshan Wang & Yue Wang & Alfred Peris, 2021. "The Influence of Research Reports on Stock Returns: The Mediating Effect of Machine-Learning-Based Investor Sentiment," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-14, December.
    65. Jung, Sang Hoon & Jeong, Yong Jin, 2021. "Examining stock markets and societal mood using Internet memes," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    66. Hussain, Shahzad & Akbar, Muhammad & Malik, Qaisar & Ahmad, Tanveer & Abbas, Nasir, 2021. "Downside Systematic Risk in Pakistani Stock Market: Role of Corporate Governance, Financial Liberalization and Investor Sentiment," CAFE Working Papers 14, Centre for Accountancy, Finance and Economics (CAFE), Birmingham City Business School, Birmingham City University.
    67. Chu, Xiaojun & Wan, Xinmin & Qiu, Jianying, 2023. "The relative importance of overnight sentiment versus trading-hour sentiment in volatility forecasting," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    68. Roland Fuess & Massimo Guidolin & Christian Koeppel, 2019. "Sentiment Risk Premia in the Cross-Section of Global Equity and Currency Returns," BAFFI CAREFIN Working Papers 19116, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    69. Liang, Chao & Luo, Qin & Li, Yan & Huynh, Luu Duc Toan, 2023. "Global financial stress index and long-term volatility forecast for international stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    70. Ruzita Abdul-Rahim & Airil Khalid & Zulkefly Abdul Karim & Mamunur Rashid, 2022. "Exploring the Driving Forces of Stock-Cryptocurrency Comovements during COVID-19 Pandemic: An Analysis Using Wavelet Coherence and Seemingly Unrelated Regression," Mathematics, MDPI, vol. 10(12), pages 1-19, June.
    71. Bai, Xiwen & Lam, Jasmine Siu Lee & Jakher, Astha, 2021. "Shipping sentiment and the dry bulk shipping freight market: New evidence from newspaper coverage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    72. Luo, Qin & Bu, Jinfeng & Xu, Weiju & Huang, Dengshi, 2023. "Stock market volatility prediction: Evidence from a new bagging model," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 445-456.
    73. Tseng‐Chan Tseng & Hung‐Cheng Lai & Jih‐Kuang Chen, 2022. "Impacts of relatively rational and irrational investor sentiment on realized volatility," Asian Economic Journal, East Asian Economic Association, vol. 36(4), pages 458-478, December.
    74. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2021. "Realized skewness and the short-term predictability for aggregate stock market volatility," Economic Modelling, Elsevier, vol. 103(C).
    75. Liang, Chao & Tang, Linchun & Li, Yan & Wei, Yu, 2020. "Which sentiment index is more informative to forecast stock market volatility? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 71(C).
    76. Adam Clements & Yin Liao & Yusui Tang, 2022. "Moving beyond Volatility Index (VIX): HARnessing the term structure of implied volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 86-99, January.
    77. Wang, Hua & Xu, Liao & Sharma, Susan Sunila, 2021. "Does investor attention increase stock market volatility during the COVID-19 pandemic?," Pacific-Basin Finance Journal, Elsevier, vol. 69(C).
    78. Naimoli, Antonio, 2023. "The information content of sentiment indices in forecasting Value at Risk and Expected Shortfall: a Complete Realized Exponential GARCH-X approach," International Economics, Elsevier, vol. 176(C).
    79. Gong, Xue & Zhang, Weiguo & Wang, Junbo & Wang, Chao, 2022. "Investor sentiment and stock volatility: New evidence," International Review of Financial Analysis, Elsevier, vol. 80(C).
    80. Lyócsa, Štefan & Halousková, Martina & Haugom, Erik, 2023. "The US banking crisis in 2023: Intraday attention and price variation of banks at risk," Finance Research Letters, Elsevier, vol. 57(C).
    81. Aromi, J. Daniel & Clements, Adam, 2021. "Facial expressions and the business cycle," Economic Modelling, Elsevier, vol. 102(C).
    82. Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.
    83. Herrera, Gabriel Paes & Constantino, Michel & Su, Jen-Je & Naranpanawa, Athula, 2022. "Renewable energy stocks forecast using Twitter investor sentiment and deep learning," Energy Economics, Elsevier, vol. 114(C).

  4. Audrino, Francesco & Tetereva, Anastasija, 2019. "Sentiment spillover effects for US and European companies," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 542-567.

    Cited by:

    1. Das, Prashant & Füss, Roland & Hanle, Benjamin & Russ, Isabel Nina, 2020. "The cross-over effect of irrational sentiments in housing, commercial property, and stock markets," Journal of Banking & Finance, Elsevier, vol. 114(C).
    2. Pedro Manuel Nogueira Reis & Carlos Pinho, 2021. "A Reappraisal of the Causal Relationship between Sentiment Proxies and Stock Returns," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 22(4), pages 420-442, October.
    3. Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2019. "LASSO-Driven Inference in Time and Space," CeMMAP working papers CWP20/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Guglielmo Maria Caporale & Faek Menla Ali & Fabio Spagnolo & Nicola Spagnolo, 2020. "Cross-Border Portfolio Flows and News Media Coverage," CESifo Working Paper Series 8112, CESifo.
    5. Ballinari, Daniele & Behrendt, Simon, 2020. "Structural breaks in online investor sentiment: A note on the nonstationarity of financial chatter," Finance Research Letters, Elsevier, vol. 35(C).
    6. Roland Füss & Massimo Guidolin & Christian Koeppel, 2019. "Sentiment Risk Premia In The Cross-Section of Global Equity," Working Papers on Finance 1913, University of St. Gallen, School of Finance, revised May 2020.
    7. Andrew Todd & James Bowden & Yashar Moshfeghi, 2024. "Text‐based sentiment analysis in finance: Synthesising the existing literature and exploring future directions," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(1), March.
    8. Samitas, Aristeidis & Kampouris, Elias & Polyzos, Stathis, 2022. "Covid-19 pandemic and spillover effects in stock markets: A financial network approach," International Review of Financial Analysis, Elsevier, vol. 80(C).
    9. Bei, Zeyun & Lin, Juan & Zhou, Yinggang, 2024. "No safe haven, only diversification and contagion — Intraday evidence around the COVID-19 pandemic," Journal of International Money and Finance, Elsevier, vol. 143(C).
    10. Alomari, Mohammad & Al Rababa’a, Abdel Razzaq & El-Nader, Ghaith & Alkhataybeh, Ahmad & Ur Rehman, Mobeen, 2021. "Examining the effects of news and media sentiments on volatility and correlation: Evidence from the UK," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 280-297.
    11. Alexander Koch & Toan Luu Duc Huynh & Mei Wang, 2024. "News sentiment and international equity markets during BREXIT period: A textual and connectedness analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 5-34, January.
    12. Ouyang, Zisheng & Zhou, Xuewei & Lu, Min & Liu, Ke, 2024. "Imported financial risk in global stock markets: Evidence from the interconnected network," Research in International Business and Finance, Elsevier, vol. 69(C).
    13. Aysan, Ahmet Faruk & Polat, Ali Yavuz & Tekin, Hasan & Tunali, Ahmet Semih, 2021. "Bitcoin-specific fear sentiment and bitcoin returns in the COVID-19 outbreak," MPRA Paper 110013, University Library of Munich, Germany.
    14. Danilo Vassallo & Giacomo Bormetti & Fabrizio Lillo, 2019. "A tale of two sentiment scales: Disentangling short-run and long-run components in multivariate sentiment dynamics," Papers 1910.01407, arXiv.org, revised Sep 2020.
    15. Huynh, Toan Luu Duc & Foglia, Matteo & Nasir, Muhammad Ali & Angelini, Eliana, 2021. "Feverish sentiment and global equity markets during the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 1088-1108.
    16. Wang, Wenzhao & Su, Chen & Duxbury, Darren, 2022. "The conditional impact of investor sentiment in global stock markets: A two-channel examination," Journal of Banking & Finance, Elsevier, vol. 138(C).
    17. Parhizgari, A.M. & Padungsaksawasdi, Chaiyuth, 2021. "Global equity market leadership positions through implied volatility measures," Journal of Empirical Finance, Elsevier, vol. 61(C), pages 180-205.
    18. Niţoi, Mihai & Pochea, Maria Miruna, 2022. "The nexus between bank connectedness and investors’ sentiment," Finance Research Letters, Elsevier, vol. 44(C).
    19. Caporin, Massimiliano & Poli, Francesco, 2022. "News and intraday jumps: Evidence from regularization and class imbalance," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    20. Roland Fuess & Massimo Guidolin & Christian Koeppel, 2019. "Sentiment Risk Premia in the Cross-Section of Global Equity and Currency Returns," BAFFI CAREFIN Working Papers 19116, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    21. Ben Osman, Myriam & Galariotis, Emilios & Guesmi, Khaled & Hamdi, Haykel & Naoui, Kamel, 2024. "Are markets sentiment driving the price bubbles in the virtual?," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 272-285.

  5. Audrino Francesco & Huang Chen & Okhrin Ostap, 2019. "Flexible HAR model for realized volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(3), pages 1-22, June.

    Cited by:

    1. Verena Monschang & Bernd Wilfling, 2022. "A procedure for upgrading linear-convex combination forecasts with an application to volatility prediction," CQE Working Papers 9722, Center for Quantitative Economics (CQE), University of Muenster.
    2. Zhifeng Dai & Tingyu Li & Mi Yang, 2022. "Forecasting stock return volatility: The role of shrinkage approaches in a data‐rich environment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 980-996, August.
    3. Won-Tak Hong & Jiwon Lee & Eunju Hwang, 2020. "A Note on the Asymptotic Normality Theory of the Least Squares Estimates in Multivariate HAR-RV Models," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    4. Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
    5. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    6. Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    7. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    8. Lyócsa, Štefan & Todorova, Neda, 2024. "Forecasting of clean energy market volatility: The role of oil and the technology sector," Energy Economics, Elsevier, vol. 132(C).
    9. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    10. Tian Xie, 2019. "Forecast Bitcoin Volatility with Least Squares Model Averaging," Econometrics, MDPI, vol. 7(3), pages 1-20, September.

  6. Audrino, Francesco & Kostrov, Alexander & Ortega, Juan-Pablo, 2019. "Predicting U.S. Bank Failures with MIDAS Logit Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(6), pages 2575-2603, December.

    Cited by:

    1. Jiang, Cuixia & Nie, Yubing & Xu, Qifa, 2023. "A MIDAS multinomial logit model with applications for bond ratings," Global Finance Journal, Elsevier, vol. 57(C).
    2. Patel, Ajay & Sorokina, Nonna & Thornton, John H., 2022. "Liquidity and bank capital structure," Journal of Financial Stability, Elsevier, vol. 62(C).
    3. Li, Zhe & Liang, Shuguang & Pan, Xianyou & Pang, Meng, 2024. "Credit risk prediction based on loan profit: Evidence from Chinese SMEs," Research in International Business and Finance, Elsevier, vol. 67(PA).
    4. Zhou, Ying & Shen, Long & Ballester, Laura, 2023. "A two-stage credit scoring model based on random forest: Evidence from Chinese small firms," International Review of Financial Analysis, Elsevier, vol. 89(C).
    5. Lee, Kangbok & Joo, Sunghoon & Baik, Hyeoncheol & Han, Sumin & In, Joonhwan, 2020. "Unbalanced data, type II error, and nonlinearity in predicting M&A failure," Journal of Business Research, Elsevier, vol. 109(C), pages 271-287.
    6. Kristóf, Tamás & Virág, Miklós, 2022. "EU-27 bank failure prediction with C5.0 decision trees and deep learning neural networks," Research in International Business and Finance, Elsevier, vol. 61(C).
    7. Jiang, Cuixia & Xiong, Wei & Xu, Qifa & Liu, Yezheng, 2021. "Predicting default of listed companies in mainland China via U-MIDAS Logit model with group lasso penalty," Finance Research Letters, Elsevier, vol. 38(C).
    8. Goldmann, Leonie & Crook, Jonathan & Calabrese, Raffaella, 2024. "A new ordinal mixed-data sampling model with an application to corporate credit rating levels," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1111-1126.

  7. Audrino Francesco, 2018. "Do match officials give preferential treatment to the strongest football teams? An analysis of four top European clubs," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 14(4), pages 185-199, December.

    Cited by:

    1. Carlos Alberto Belchior, 2020. "Fans and Match Results: Evidence From a Natural Experiment in Brazil," Journal of Sports Economics, , vol. 21(7), pages 663-687, October.

  8. Francesco Audrino & Lorenzo Camponovo, 2018. "Oracle Properties, Bias Correction, and Bootstrap Inference for Adaptive Lasso for Time Series M†Estimators," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(2), pages 111-128, March.

    Cited by:

    1. Audrino, Francesco & Tetereva, Anastasija, 2019. "Sentiment spillover effects for US and European companies," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 542-567.
    2. Caporin, Massimiliano & Poli, Francesco, 2022. "News and intraday jumps: Evidence from regularization and class imbalance," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    3. Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.

  9. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
    See citations under working paper version above.
  10. Francesco Audrino & Simon D. Knaus, 2016. "Lassoing the HAR Model: A Model Selection Perspective on Realized Volatility Dynamics," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1485-1521, December.
    See citations under working paper version above.
  11. Audrino, Francesco & Fengler, Matthias R., 2015. "Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 46-63.
    See citations under working paper version above.
  12. Fulvio Corsi & Stefano Peluso & Francesco Audrino, 2015. "Missing in Asynchronicity: A Kalman‐em Approach for Multivariate Realized Covariance Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(3), pages 377-397, April.
    See citations under working paper version above.
  13. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    See citations under working paper version above.
  14. Filipova, Kameliya & Audrino, Francesco & De Giorgi, Enrico, 2014. "Monetary policy regimes: Implications for the yield curve and bond pricing," Journal of Financial Economics, Elsevier, vol. 113(3), pages 427-454.

    Cited by:

    1. Francesco Audrino & Lorenzo Camponovo, 2013. "Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models," Papers 1312.1473, arXiv.org.
    2. Audrino, Francesco & Serwart, Jan, 2024. "Yield curve trading strategies exploiting sentiment data," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    3. Shang, Fei, 2022. "The effect of uncertainty on the sensitivity of the yield curve to monetary policy surprises," Journal of Economic Dynamics and Control, Elsevier, vol. 137(C).
    4. Zheng Qiao & Yangshu Liu, 2017. "Open Market Operation Effectiveness in China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 53(8), pages 1706-1719, August.
    5. Gozluklu, Arie & Morin, Annaïg, 2019. "Stock vs. Bond yields and demographic fluctuations," Journal of Banking & Finance, Elsevier, vol. 109(C).

  15. Francesco Audrino, 2012. "What Drives Short Rate Dynamics? A Functional Gradient Descent Approach," Computational Economics, Springer;Society for Computational Economics, vol. 39(3), pages 315-335, March.

    Cited by:

    1. Ranik Raaen Wahlstrøm & Florentina Paraschiv & Michael Schürle, 2022. "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 967-1004, March.
    2. Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 99-122, January.

  16. Fulvio Corsi & Francesco Audrino, 2012. "Realized Covariance Tick-by-Tick in Presence of Rounded Time Stamps and General Microstructure Effects," Journal of Financial Econometrics, Oxford University Press, vol. 10(4), pages 591-616, September. See citations under working paper version above.
  17. Audrino, Francesco & Trojani, Fabio, 2011. "A General Multivariate Threshold GARCH Model With Dynamic Conditional Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 138-149.
    See citations under working paper version above.
  18. Francesco Audrino & Marcelo C. Medeiros, 2011. "Modeling and forecasting short‐term interest rates: The benefits of smooth regimes, macroeconomic variables, and bagging," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 999-1022, September.
    See citations under working paper version above.
  19. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    See citations under working paper version above.
  20. Francesco Audrino & Peter Bühlmann, 2009. "Splines for financial volatility," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 655-670, June.
    See citations under working paper version above.
  21. Francesco Audrino & Robert Fernholz & Roberto Ferretti, 2007. "A Forecasting Model for Stock Market Diversity," Annals of Finance, Springer, vol. 3(2), pages 213-240, March.

    Cited by:

    1. Efstathios Polyzos & Costas Siriopoulos, 2024. "Autoregressive Random Forests: Machine Learning and Lag Selection for Financial Research," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 225-262, July.
    2. Andrey Sarantsev, 2014. "On a class of diverse market models," Annals of Finance, Springer, vol. 10(2), pages 291-314, May.
    3. Steven Campbell & Qien Song & Ting-Kam Leonard Wong, 2024. "Macroscopic properties of equity markets: stylized facts and portfolio performance," Papers 2409.10859, arXiv.org, revised Oct 2024.

  22. Giovanni Barone-Adesi & Francesco Audrino, 2006. "Average conditional correlation and tree structures for multivariate GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(8), pages 579-600.

    Cited by:

    1. K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility with Bayesian dynamic linear models," Papers 0802.0214, arXiv.org.
    2. Jacobs, Michael & Karagozoglu, Ahmet K., 2014. "On the characteristics of dynamic correlations between asset pairs," Research in International Business and Finance, Elsevier, vol. 32(C), pages 60-82.
    3. Audrino, Francesco, 2006. "The impact of general non-parametric volatility functions in multivariate GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3032-3052, July.

  23. Audrino, Francesco, 2006. "The impact of general non-parametric volatility functions in multivariate GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3032-3052, July.

    Cited by:

    1. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
    2. Elezovic, Suad, 2009. "Functional modelling of volatility in the Swedish limit order book," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2107-2118, April.
    3. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    4. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc S., 2006. "Accurate Value-at-Risk forecast with the (good old) normal-GARCH model," CFS Working Paper Series 2006/23, Center for Financial Studies (CFS).
    5. Gulpinar, Nalan & Rustem, Berc, 2007. "Robust optimal decisions with imprecise forecasts," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3595-3611, April.
    6. Teresa Serra & José M. Gil, 2013. "Price volatility in food markets: can stock building mitigate price fluctuations?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 40(3), pages 507-528, July.
    7. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    8. Serra, Teresa, 2011. "Volatility spillovers between food and energy markets: A semiparametric approach," Energy Economics, Elsevier, vol. 33(6), pages 1155-1164.
    9. Barrow, Devon K. & Crone, Sven F., 2016. "A comparison of AdaBoost algorithms for time series forecast combination," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1103-1119.
    10. Ane, Thierry, 2006. "An analysis of the flexibility of Asymmetric Power GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1293-1311, November.

  24. Audrino, Francesco & Barone-Adesi, Giovanni, 2006. "A dynamic model of expected bond returns: A functional gradient descent approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2267-2277, December.

    Cited by:

    1. Chen, Baoline & Zadrozny, Peter A., 2009. "Multi-step perturbation solution of nonlinear differentiable equations applied to an econometric analysis of productivity," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2061-2074, April.
    2. Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 99-122, January.

  25. Fabio Trojani & Francesco Audrino, 2006. "Estimating and predicting multivariate volatility thresholds in global stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 345-369.

    Cited by:

    1. Marcelo Cunha Medeiros & Alvaro Veiga, 2004. "Modelling multiple regimes in financial volatility with a flexible coefficient GARCH model," Textos para discussão 486, Department of Economics PUC-Rio (Brazil).
    2. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    3. Nidhal Mgadmi & Khemaies Bougatef, 2017. "Modeling volatility of the French stock market," Economics Bulletin, AccessEcon, vol. 37(2), pages 988-998.
    4. Francesco Audrino & Kameliya Filipova, 2009. "Yield Curve Predictability, Regimes, and Macroeconomic Information: A Data-Driven Approach," University of St. Gallen Department of Economics working paper series 2009 2009-10, Department of Economics, University of St. Gallen.
    5. Fabio Trojani & Francesco Audrino, 2005. "A general multivariate threshold GARCH model with dynamic conditional correlations," University of St. Gallen Department of Economics working paper series 2005 2005-04, Department of Economics, University of St. Gallen.
    6. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    7. Philippe Charlot & Vêlayoudom Marimoutou, 2008. "Hierarchical hidden Markov structure for dynamic correlations: the hierarchical RSDC model," Working Papers halshs-00285866, HAL.
    8. Francesco Audrino & Robert Fernholz & Roberto Ferretti, 2007. "A Forecasting Model for Stock Market Diversity," Annals of Finance, Springer, vol. 3(2), pages 213-240, March.
    9. Sarantis Tsiaplias & Chew Lian Chua, 2013. "A Multivariate GARCH Model Incorporating the Direct and Indirect Transmission of Shocks," Econometric Reviews, Taylor & Francis Journals, vol. 32(2), pages 244-271, February.
    10. Giovanni Barone-Adesi & Francesco Audrino, 2006. "Average conditional correlation and tree structures for multivariate GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(8), pages 579-600.
    11. Kung, Ling-Ming & Yu, Shang-Wu, 2008. "Prediction of index futures returns and the analysis of financial spillovers--A comparison between GARCH and the grey theorem," European Journal of Operational Research, Elsevier, vol. 186(3), pages 1184-1200, May.

  26. Audrino, Francesco, 2006. "Tree-Structured Multiple Regimes in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 338-353, July.

    Cited by:

    1. Francesco Audrino, 2012. "What Drives Short Rate Dynamics? A Functional Gradient Descent Approach," Computational Economics, Springer;Society for Computational Economics, vol. 39(3), pages 315-335, March.
    2. Harvey David I & Leybourne Stephen J & Xiao Bin, 2008. "A Powerful Test for Linearity When the Order of Integration is Unknown," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-24, September.
    3. Filipova, Kameliya & Audrino, Francesco & De Giorgi, Enrico, 2014. "Monetary policy regimes: Implications for the yield curve and bond pricing," Journal of Financial Economics, Elsevier, vol. 113(3), pages 427-454.
    4. Audrino, Francesco & Serwart, Jan, 2024. "Yield curve trading strategies exploiting sentiment data," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    5. Francesco Audrino & Kameliya Filipova, 2009. "Yield Curve Predictability, Regimes, and Macroeconomic Information: A Data-Driven Approach," University of St. Gallen Department of Economics working paper series 2009 2009-10, Department of Economics, University of St. Gallen.
    6. Fabio Trojani & Francesco Audrino, 2005. "A general multivariate threshold GARCH model with dynamic conditional correlations," University of St. Gallen Department of Economics working paper series 2005 2005-04, Department of Economics, University of St. Gallen.
    7. Francesco Audrino & Enrico De Giorgi, "undated". "Beta Regimes for the Yield Curve," IEW - Working Papers 244, Institute for Empirical Research in Economics - University of Zurich.
    8. Francesco Audrino & Marcelo C. Medeiros, 2008. "Smooth Regimes, Macroeconomic Variables, and Bagging for the Short-Term Interest Rate Process," University of St. Gallen Department of Economics working paper series 2008 2008-16, Department of Economics, University of St. Gallen.
    9. Audrino, Francesco & Offner, Eric A., 2024. "The impact of macroeconomic news sentiment on interest rates," International Review of Financial Analysis, Elsevier, vol. 94(C).
    10. Francesco Audrino & Marcelo C. Medeiros, 2011. "Modeling and forecasting short‐term interest rates: The benefits of smooth regimes, macroeconomic variables, and bagging," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 999-1022, September.

  27. Audrino, Francesco & Barone-Adesi, Giovanni, 2005. "Functional gradient descent for financial time series with an application to the measurement of market risk," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 959-977, April.

    Cited by:

    1. Teresa Buchen & Klaus Wohlrabe, 2013. "Assessing the Macroeconomic Forecasting Performance of Boosting - Evidence for the United States, the Euro Area, and Germany," CESifo Working Paper Series 4148, CESifo.
    2. Alexandros Agapitos & Anthony Brabazon & Michael O’Neill, 2017. "Regularised gradient boosting for financial time-series modelling," Computational Management Science, Springer, vol. 14(3), pages 367-391, July.
    3. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    4. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    5. Fresoli, Diego Eduardo, 2014. "The uncertainty of conditional returns, volatilities and correlations in DCC models," DES - Working Papers. Statistics and Econometrics. WS ws140202, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Fries, Christian P. & Nigbur, Tobias & Seeger, Norman, 2017. "Displaced relative changes in historical simulation: Application to risk measures of interest rates with phases of negative rates," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 175-198.
    7. Fabio Trojani, 2007. "Accurate Short-Term Yield Curve Forecasting using Functional Gradient Descent," Journal of Financial Econometrics, Oxford University Press, vol. 5(4), pages 591-623, Fall.
    8. Katarina Valaskova & Tomas Kliestik & Lucia Svabova & Peter Adamko, 2018. "Financial Risk Measurement and Prediction Modelling for Sustainable Development of Business Entities Using Regression Analysis," Sustainability, MDPI, vol. 10(7), pages 1-15, June.

  28. Francesco Audrino & Giovanni Barone-Adesi, 2005. "A multivariate FGD technique to improve VaR computation in equity markets," Computational Management Science, Springer, vol. 2(2), pages 87-106, March.

    Cited by:

    1. Fabio Trojani & Francesco Audrino, 2005. "Accurate Yield Curve Scenarios Generation using Functional Gradient Descent," Computing in Economics and Finance 2005 14, Society for Computational Economics.
    2. Pritsker, Matthew, 2006. "The hidden dangers of historical simulation," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 561-582, February.
    3. Fries, Christian P. & Nigbur, Tobias & Seeger, Norman, 2017. "Displaced relative changes in historical simulation: Application to risk measures of interest rates with phases of negative rates," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 175-198.
    4. Audrino, Francesco & Barone-Adesi, Giovanni, 2005. "Functional gradient descent for financial time series with an application to the measurement of market risk," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 959-977, April.
    5. Fabio Trojani, 2007. "Accurate Short-Term Yield Curve Forecasting using Functional Gradient Descent," Journal of Financial Econometrics, Oxford University Press, vol. 5(4), pages 591-623, Fall.

  29. Francesco Audrino, 2005. "Local Likelihood for non‐parametric ARCH(1) models," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(2), pages 251-278, March.

    Cited by:

    1. Francesco Audrino & Peter Bühlmann, 2007. "Splines for Financial Volatility," University of St. Gallen Department of Economics working paper series 2007 2007-11, Department of Economics, University of St. Gallen.
    2. Arash Nademi & Rahman Farnoosh, 2014. "Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 275-293, February.

  30. Francesco Audrino, 2005. "The Stability of Factor Models of Interest Rates," Journal of Financial Econometrics, Oxford University Press, vol. 3(3), pages 422-441.

    Cited by:

    1. Audrino, Francesco & Barone-Adesi, Giovanni, 2006. "A dynamic model of expected bond returns: A functional gradient descent approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2267-2277, December.
    2. Blomvall, Jörgen & Hagenbjörk, Johan, 2019. "A generic framework for monetary performance attribution," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 121-133.
    3. Francesco Audrino & Dominik Colagelo, 2007. "Forecasting Implied Volatility Surfaces," University of St. Gallen Department of Economics working paper series 2007 2007-42, Department of Economics, University of St. Gallen.
    4. Blaskowitz, Oliver J. & Herwartz, Helmut, 2008. "Adaptive forecasting of the EURIBOR swap term structure," SFB 649 Discussion Papers 2008-017, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Zema, Sebastiano Michele, 2022. "Directed acyclic graph based information shares for price discovery," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    6. Chihwa Kao & Lorenzo Trapani & Giovanni Urga, 2007. "Modelling and Testing for Structural Changes in Panel Cointegration Models with Common and Idiosyncratic Stochastic Trends," Working Papers 0708, Department of Management, Information and Production Engineering, University of Bergamo.
    7. Sebastiano Michele Zema, 2020. "Directed Acyclic Graph based Information Shares for Price Discovery," LEM Papers Series 2020/28, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. Oliver Blaskowitz & Helmut Herwartz, 2009. "Adaptive forecasting of the EURIBOR swap term structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 575-594.

  31. Francesco Audrino & Peter Bühlmann, 2001. "Tree‐structured generalized autoregressive conditional heteroscedastic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 727-744.

    Cited by:

    1. Amaya, Johanna & Arellana, Julian & Delgado-Lindeman, Maira, 2020. "Stakeholders perceptions to sustainable urban freight policies in emerging markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 329-348.
    2. Meister, Alexander & Kreiß, Jens-Peter, 2016. "Statistical inference for nonparametric GARCH models," Stochastic Processes and their Applications, Elsevier, vol. 126(10), pages 3009-3040.
    3. Francesco Audrino & Peter Bühlmann, 2007. "Splines for Financial Volatility," University of St. Gallen Department of Economics working paper series 2007 2007-11, Department of Economics, University of St. Gallen.
    4. Liu, Wei & Garrett, Ian, 2023. "Regime-dependent effects of macroeconomic uncertainty on realized volatility in the U.S. stock market," Economic Modelling, Elsevier, vol. 128(C).
    5. Lee, Paul H. & Yu, Philip L.H., 2010. "Distance-based tree models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1672-1682, June.
    6. Ioannis Papageorgiou & Ioannis Kontoyiannis, 2023. "The Bayesian Context Trees State Space Model for time series modelling and forecasting," Papers 2308.00913, arXiv.org, revised Oct 2023.
    7. Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.

  32. Francesco Audrino & Enrico De Giorgi, 0. "Beta Regimes for the Yield Curve," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 456-490.
    See citations under working paper version above.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.