IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v73y2025ipbs027553192400432x.html
   My bibliography  Save this article

Integration of investor behavioral perspective and climate change in reinforcement learning for portfolio optimization

Author

Listed:
  • Bouyaddou, Youssef
  • Jebabli, Ikram

Abstract

Addressing environmental impact is increasingly imperative for individual investors and large financial institutions, making it a key objective of socially responsible investing. However, there is a noticeable gap in research on integrating sustainability and low-carbon considerations into machine learning-based portfolio optimization. To meet this challenge, this study introduces a Portfolio Emissions Sentiment Attention Aware Reinforcement Learning (PESAARL) model based on the Proximal Policy Optimization (PPO) algorithm to optimize a portfolio of Dow Jones Industrial Average (DJIA) stocks. PESAARL uniquely integrates environmental impact considerations, specifically carbon footprint using the firm level scope 1 and scope 2 emissions data, alongside firm-level investor sentiment and attention, into the investment decision-making process. Through multiple experiments, PESAARL demonstrates significant advantages, in terms of financial and environmental performance, over the benchmarks.

Suggested Citation

  • Bouyaddou, Youssef & Jebabli, Ikram, 2025. "Integration of investor behavioral perspective and climate change in reinforcement learning for portfolio optimization," Research in International Business and Finance, Elsevier, vol. 73(PB).
  • Handle: RePEc:eee:riibaf:v:73:y:2025:i:pb:s027553192400432x
    DOI: 10.1016/j.ribaf.2024.102639
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S027553192400432X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2024.102639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:73:y:2025:i:pb:s027553192400432x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.