IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-024-03434-2.html
   My bibliography  Save this article

Methods for aggregating investor sentiment from social media

Author

Listed:
  • Qing Liu

    (Nam-gu
    Huainan Normal University)

  • Hosung Son

    (Nam-gu)

Abstract

Social media-based investor sentiment proxies provide a brand new solution to recognize and measure investor sentiment. Aggregating individual social media text sentiments into public sentiments through a specific aggregation method is a necessary part of constructing an investor sentiment index for social media. The choice or design of the aggregation method directly affects whether or not the researcher can capture the sentiment of the market. This study provides the first systematic review of mainstream methods for aggregating investor sentiment from social media. In addition, we systematically discuss some of the key issues of historical researchers in aggregating investor sentiment, such as neutral sentiment text, simple aggregation of directly aggregated text, etc. The findings suggest that the aggregation method used by researchers directly affects the reliability of investor sentiment indices. Therefore, scholars should carefully choose sentiment aggregation algorithms based on the combination of datasets and sentiment tracking tools and articulate their rationale. This study provides important references for behavioral finance, social media mining, and microinvestor sentiment metrics.

Suggested Citation

  • Qing Liu & Hosung Son, 2024. "Methods for aggregating investor sentiment from social media," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-22, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03434-2
    DOI: 10.1057/s41599-024-03434-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-024-03434-2
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-024-03434-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ying Zhang & Peggy Swanson, 2010. "Are day traders bias free?—evidence from internet stock message boards," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 34(1), pages 96-112, January.
    2. Sanjiv R. Das & Mike Y. Chen, 2007. "Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web," Management Science, INFORMS, vol. 53(9), pages 1375-1388, September.
    3. Nofer, Michael & Hinz, Oliver, 2014. "Are Crowds on the Internet Wiser than Experts? The Case of a Stock Prediction Community," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 69935, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    5. Sanjiv Das & Asís Martínez-Jerez & Peter Tufano, 2005. "eInformation: A Clinical Study of Investor Discussion and Sentiment," Financial Management, Financial Management Association, vol. 34(3), Fall.
    6. Rui Fan & Oleksandr Talavera & Vu Tran, 2020. "Social media bots and stock markets," European Financial Management, European Financial Management Association, vol. 26(3), pages 753-777, June.
    7. Kim, Soon-Ho & Kim, Dongcheol, 2014. "Investor sentiment from internet message postings and the predictability of stock returns," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 708-729.
    8. Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
    9. Guofu Zhou, 2018. "Measuring Investor Sentiment," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 239-259, November.
    10. Siganos, Antonios & Vagenas-Nanos, Evangelos & Verwijmeren, Patrick, 2017. "Divergence of sentiment and stock market trading," Journal of Banking & Finance, Elsevier, vol. 78(C), pages 130-141.
    11. Siganos, Antonios & Vagenas-Nanos, Evangelos & Verwijmeren, Patrick, 2014. "Facebook's daily sentiment and international stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 730-743.
    12. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    13. Shleifer, Andrei & Vishny, Robert W, 1997. "The Limits of Arbitrage," Journal of Finance, American Finance Association, vol. 52(1), pages 35-55, March.
    14. Nofer, Michael & Hinz, Oliver, 2015. "Using Twitter to Predict the Stock Market: Where is the Mood Effect?," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 77140, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    16. Michael Nofer & Oliver Hinz, 2015. "Using Twitter to Predict the Stock Market," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 57(4), pages 229-242, August.
    17. Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
    18. Chelo Vargas-Sierra & M. Ángeles Orts, 2023. "Sentiment and emotion in financial journalism: a corpus-based, cross-linguistic analysis of the effects of COVID," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-17, December.
    19. Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
    20. Feng Li, 2010. "The Information Content of Forward‐Looking Statements in Corporate Filings—A Naïve Bayesian Machine Learning Approach," Journal of Accounting Research, Wiley Blackwell, vol. 48(5), pages 1049-1102, December.
    21. Young Bin Kim & Jun Gi Kim & Wook Kim & Jae Ho Im & Tae Hyeong Kim & Shin Jin Kang & Chang Hun Kim, 2016. "Predicting Fluctuations in Cryptocurrency Transactions Based on User Comments and Replies," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-17, August.
    22. Giannini, Robert & Irvine, Paul & Shu, Tao, 2019. "The convergence and divergence of investors' opinions around earnings news: Evidence from a social network," Journal of Financial Markets, Elsevier, vol. 42(C), pages 94-120.
    23. Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
    24. Wang, Xinjie & Xiang, Zhiqiang & Xu, Weike & Yuan, Peixuan, 2022. "The causal relationship between social media sentiment and stock return: Experimental evidence from an online message forum," Economics Letters, Elsevier, vol. 216(C).
    25. Mike Thelwall & Kevan Buckley & Georgios Paltoglou, 2012. "Sentiment strength detection for the social web," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(1), pages 163-173, January.
    26. Joseph J. Seneca, 1967. "Short Interest: Bearish Or Bullish?," Journal of Finance, American Finance Association, vol. 22(1), pages 67-70, March.
    27. Diego García, 2013. "Sentiment during Recessions," Journal of Finance, American Finance Association, vol. 68(3), pages 1267-1300, June.
    28. Seshadri Tirunillai & Gerard J. Tellis, 2012. "Does Chatter Really Matter? Dynamics of User-Generated Content and Stock Performance," Marketing Science, INFORMS, vol. 31(2), pages 198-215, March.
    29. Timm O. Sprenger & Andranik Tumasjan & Philipp G. Sandner & Isabell M. Welpe, 2014. "Tweets and Trades: the Information Content of Stock Microblogs," European Financial Management, European Financial Management Association, vol. 20(5), pages 926-957, November.
    30. Tim Loughran & Bill Mcdonald, 2016. "Textual Analysis in Accounting and Finance: A Survey," Journal of Accounting Research, Wiley Blackwell, vol. 54(4), pages 1187-1230, September.
    31. Sanjiv Sabherwal & Salil K. Sarkar & Ying Zhang, 2011. "Do Internet Stock Message Boards Influence Trading? Evidence from Heavily Discussed Stocks with No Fundamental News," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 38(9-10), pages 1209-1237, November.
    32. repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
    33. Karen Wong & Wai Cheong Shum, 2010. "Exchange-traded funds in bullish and bearish markets," Applied Economics Letters, Taylor & Francis Journals, vol. 17(16), pages 1615-1624.
    34. Hailiang Chen & Prabuddha De & Yu (Jeffrey) Hu & Byoung-Hyoun Hwang, 2014. "Wisdom of Crowds: The Value of Stock Opinions Transmitted Through Social Media," The Review of Financial Studies, Society for Financial Studies, vol. 27(5), pages 1367-1403.
    35. Mike Thelwall & Kevan Buckley & Georgios Paltoglou, 2012. "Sentiment strength detection for the social web," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(1), pages 163-173, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Liu & Hosung Son, 2024. "Data selection and collection for constructing investor sentiment from social media," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    2. Daniele Ballinari & Simon Behrendt, 2021. "How to gauge investor behavior? A comparison of online investor sentiment measures," Digital Finance, Springer, vol. 3(2), pages 169-204, June.
    3. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    4. Bowden, James & Gemayel, Roland, 2022. "Sentiment and trading decisions in an ambiguous environment: A study on cryptocurrency traders," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    5. Agarwal, Shweta & Kumar, Shailendra & Goel, Utkarsh, 2019. "Stock market response to information diffusion through internet sources: A literature review," International Journal of Information Management, Elsevier, vol. 45(C), pages 118-131.
    6. Anand, Abhinav & Basu, Sankarshan & Pathak, Jalaj & Thampy, Ashok, 2021. "The impact of sentiment on emerging stock markets," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 161-177.
    7. Eierle, Brigitte & Klamer, Sebastian & Muck, Matthias, 2022. "Does it really pay off for investors to consider information from social media?," International Review of Financial Analysis, Elsevier, vol. 81(C).
    8. Enwei Zhu & Jing Wu & Hongyu Liu & Keyang Li, 2023. "A Sentiment Index of the Housing Market in China: Text Mining of Narratives on Social Media," The Journal of Real Estate Finance and Economics, Springer, vol. 66(1), pages 77-118, January.
    9. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    10. Xiong, Xiong & Meng, Yongqiang & Joseph, Nathan Lael & Shen, Dehua, 2020. "Stock mispricing, hard-to-value stocks and the influence of internet stock message boards," International Review of Financial Analysis, Elsevier, vol. 72(C).
    11. Szymon Lis, 2022. "Investor Sentiment in Asset Pricing Models: A Review," Working Papers 2022-14, Faculty of Economic Sciences, University of Warsaw.
    12. Minjian Ye & Guangzhong Li, 2017. "Internet big data and capital markets: a literature review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-18, December.
    13. Mariano González-Sánchez & M. Encina Morales de Vega, 2021. "Influence of Bloomberg’s Investor Sentiment Index: Evidence from European Union Financial Sector," Mathematics, MDPI, vol. 9(4), pages 1-21, February.
    14. Al-Nasseri, Alya & Menla Ali, Faek & Tucker, Allan, 2021. "Investor sentiment and the dispersion of stock returns: Evidence based on the social network of investors," International Review of Financial Analysis, Elsevier, vol. 78(C).
    15. Patrick Houlihan & Germán G. Creamer, 2021. "Leveraging Social Media to Predict Continuation and Reversal in Asset Prices," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 433-453, February.
    16. Zongwu Cai & Pixiong Chen, 2022. "New Online Investor Sentiment and Asset Returns," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202216, University of Kansas, Department of Economics, revised Nov 2022.
    17. Li, Xiao, 2020. "When financial literacy meets textual analysis: A conceptual review," Journal of Behavioral and Experimental Finance, Elsevier, vol. 28(C).
    18. Zachary McGurk & Adam Nowak & Joshua C. Hall, 2020. "Stock returns and investor sentiment: textual analysis and social media," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 44(3), pages 458-485, July.
    19. Chen, Cathy Yi-Hsuan & Després, Roméo & Guo, Li & Renault, Thomas, 2019. "What makes cryptocurrencies special? Investor sentiment and return predictability during the bubble," IRTG 1792 Discussion Papers 2019-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    20. Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03434-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.