IDEAS home Printed from https://ideas.repec.org/a/wly/ijfiec/v27y2022i2p1947-1961.html
   My bibliography  Save this article

Which predictor is more predictive for Bitcoin volatility? And why?

Author

Listed:
  • Chao Liang
  • Yaojie Zhang
  • Xiafei Li
  • Feng Ma

Abstract

Being more and more popular in the past 10 years, Bitcoin has drawn extensive attention from the press, scholars, and practitioners. The aim of this paper is to investigate which predictor is more predictive for Bitcoin volatility from the aspects of in‐sample and out‐of‐sample in a high‐speed changing world. We utilise the GARCH‐MIDAS model to examine the predictive power of five crucial predictors, including VIX, GVZ, Google Trends, GEPU, and GPR. Our findings provide strong evidence that GVZ exhibits strongest predictability for Bitcoin volatility over other competing predictors. Other empirical results based on different out‐of‐sample forecasting periods, alternative loss functions and combination methods further ensure our major conclusions are robust.

Suggested Citation

  • Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
  • Handle: RePEc:wly:ijfiec:v:27:y:2022:i:2:p:1947-1961
    DOI: 10.1002/ijfe.2252
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ijfe.2252
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ijfe.2252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    2. Fang, Libing & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2019. "Does global economic uncertainty matter for the volatility and hedging effectiveness of Bitcoin?," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 29-36.
    3. Buncic, Daniel & Gisler, Katja I.M., 2016. "Global equity market volatility spillovers: A broader role for the United States," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1317-1339.
    4. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    5. Feng Ma & Yaojie Zhang & M. I. M. Wahab & Xiaodong Lai, 2019. "The role of jumps in the agricultural futures market on forecasting stock market volatility: New evidence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(5), pages 400-414, August.
    6. Becker, Ralf & Clements, Adam E., 2008. "Are combination forecasts of S&P 500 volatility statistically superior?," International Journal of Forecasting, Elsevier, vol. 24(1), pages 122-133.
    7. Demir, Ender & Gozgor, Giray & Lau, Chi Keung Marco & Vigne, Samuel A., 2018. "Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation," Finance Research Letters, Elsevier, vol. 26(C), pages 145-149.
    8. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
    9. Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
    10. Sun, Licheng & Najand, Mohammad & Shen, Jiancheng, 2016. "Stock return predictability and investor sentiment: A high-frequency perspective," Journal of Banking & Finance, Elsevier, vol. 73(C), pages 147-164.
    11. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    12. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
    13. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    14. Urquhart, Andrew, 2018. "What causes the attention of Bitcoin?," Economics Letters, Elsevier, vol. 166(C), pages 40-44.
    15. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    16. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2018. "Forecasting the prices of crude oil using the predictor, economic and combined constraints," Economic Modelling, Elsevier, vol. 75(C), pages 237-245.
    17. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    18. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    19. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    20. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    21. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    22. Aaron Yelowitz & Matthew Wilson, 2015. "Characteristics of Bitcoin users: an analysis of Google search data," Applied Economics Letters, Taylor & Francis Journals, vol. 22(13), pages 1030-1036, September.
    23. Ma, Feng & Liao, Yin & Zhang, Yaojie & Cao, Yang, 2019. "Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 40-55.
    24. Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
    25. Baur, Dirk G. & Dimpfl, Thomas & Kuck, Konstantin, 2018. "Bitcoin, gold and the US dollar – A replication and extension," Finance Research Letters, Elsevier, vol. 25(C), pages 103-110.
    26. Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
    27. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    28. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    29. Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
    30. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
    31. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    32. Chao Liang & Yu Wei & Xiafei Li & Xuhui Zhang & Yifeng Zhang, 2020. "Uncertainty and crude oil market volatility: new evidence," Applied Economics, Taylor & Francis Journals, vol. 52(27), pages 2945-2959, May.
    33. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    34. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    35. Hussain Shahzad, Syed Jawad & Bouri, Elie & Roubaud, David & Kristoufek, Ladislav, 2020. "Safe haven, hedge and diversification for G7 stock markets: Gold versus bitcoin," Economic Modelling, Elsevier, vol. 87(C), pages 212-224.
    36. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    37. Sean Foley & Jonathan R Karlsen & Tālis J Putniņš, 2019. "Sex, Drugs, and Bitcoin: How Much Illegal Activity Is Financed through Cryptocurrencies?," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1798-1853.
    38. Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
    39. Zhang, Yaojie & Ma, Feng & Liao, Yin, 2020. "Forecasting global equity market volatilities," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1454-1475.
    40. Zhang, Yaojie & Ma, Feng & Shi, Benshan & Huang, Dengshi, 2018. "Forecasting the prices of crude oil: An iterated combination approach," Energy Economics, Elsevier, vol. 70(C), pages 472-483.
    41. Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.
    42. Guesmi, Khaled & Saadi, Samir & Abid, Ilyes & Ftiti, Zied, 2019. "Portfolio diversification with virtual currency: Evidence from bitcoin," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 431-437.
    43. Gong, Xu & Lin, Boqiang, 2017. "Forecasting the good and bad uncertainties of crude oil prices using a HAR framework," Energy Economics, Elsevier, vol. 67(C), pages 315-327.
    44. Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yun-Shi Dai & Peng-Fei Dai & Wei-Xing Zhou, 2024. "The impact of geopolitical risk on the international agricultural market: Empirical analysis based on the GJR-GARCH-MIDAS model," Papers 2404.01641, arXiv.org.
    2. Lyu, Zhichong & Ma, Feng & Zhang, Jixiang, 2023. "Oil futures volatility prediction: Bagging or combination?," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 457-467.
    3. Lu, Fei & Ma, Feng, 2023. "Cross-sectional uncertainty and stock market volatility: New evidence," Finance Research Letters, Elsevier, vol. 57(C).
    4. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    5. Long, Huaigang & Demir, Ender & Będowska-Sójka, Barbara & Zaremba, Adam & Shahzad, Syed Jawad Hussain, 2022. "Is geopolitical risk priced in the cross-section of cryptocurrency returns?," Finance Research Letters, Elsevier, vol. 49(C).
    6. Skander Slim & Ibrahim Tabche & Yosra Koubaa & Mohamed Osman & Andreas Karathanasopoulos, 2023. "Forecasting realized volatility of Bitcoin: The informative role of price duration," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1909-1929, November.
    7. Cuixia Jiang & Tingting Zhao & Qifa Xu & Dan Hu, 2024. "An unrestricted MIDAS ordered logit model with applications to credit ratings," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 2722-2739, July.
    8. Zhang, Li & Li, Yan & Yu, Sixin & Wang, Lu, 2023. "Risk transmission of El Niño-induced climate change to regional Green Economy Index," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 860-872.
    9. Wang, Chen & Shen, Dehua & Li, Youwei, 2022. "Aggregate Investor Attention and Bitcoin Return: The Long Short-term Memory Networks Perspective," Finance Research Letters, Elsevier, vol. 49(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Liang & Feng Ma & Lu Wang & Qing Zeng, 2021. "The information content of uncertainty indices for natural gas futures volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1310-1324, November.
    2. Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
    3. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    4. Chao Liang & Yu Wei & Likun Lei & Feng Ma, 2022. "Global equity market volatility forecasting: New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 594-609, January.
    5. Liang, Chao & Luo, Qin & Li, Yan & Huynh, Luu Duc Toan, 2023. "Global financial stress index and long-term volatility forecast for international stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    6. Wang, Jiqian & Lu, Xinjie & He, Feng & Ma, Feng, 2020. "Which popular predictor is more useful to forecast international stock markets during the coronavirus pandemic: VIX vs EPU?," International Review of Financial Analysis, Elsevier, vol. 72(C).
    7. Zhang, Yaojie & He, Mengxi & Wang, Yudong & Liang, Chao, 2023. "Global economic policy uncertainty aligned: An informative predictor for crude oil market volatility," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1318-1332.
    8. Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
    9. Chao Liang & Yan Li & Feng Ma & Yaojie Zhang, 2022. "Forecasting international equity market volatility: A new approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1433-1457, November.
    10. Mei, Dexiang & Zhao, Chenchen & Luo, Qin & Li, Yan, 2022. "Forecasting the Chinese low-carbon index volatility," Resources Policy, Elsevier, vol. 77(C).
    11. Guo, Yangli & He, Feng & Liang, Chao & Ma, Feng, 2022. "Oil price volatility predictability: New evidence from a scaled PCA approach," Energy Economics, Elsevier, vol. 105(C).
    12. Wang, Lu & Ma, Feng & Hao, Jianyang & Gao, Xinxin, 2021. "Forecasting crude oil volatility with geopolitical risk: Do time-varying switching probabilities play a role?," International Review of Financial Analysis, Elsevier, vol. 76(C).
    13. Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    14. Liang, Chao & Li, Yan & Ma, Feng & Wei, Yu, 2021. "Global equity market volatilities forecasting: A comparison of leverage effects, jumps, and overnight information," International Review of Financial Analysis, Elsevier, vol. 75(C).
    15. Huang, Yisu & Xu, Weiju & Huang, Dengshi & Zhao, Chenchen, 2023. "Chinese crude oil futures volatility and sustainability: An uncertainty indices perspective," Resources Policy, Elsevier, vol. 80(C).
    16. Song, Yixuan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market volatility: A newspaper-based predictor regarding petroleum market volatility," Resources Policy, Elsevier, vol. 79(C).
    17. Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
    18. Wang, Jiqian & He, Xiaofeng & Ma, Feng & Li, Pan, 2022. "Uncertainty and oil volatility: Evidence from shrinkage method," Resources Policy, Elsevier, vol. 75(C).
    19. Liu, Guangqiang & Guo, Xiaozhu, 2022. "Forecasting stock market volatility using commodity futures volatility information," Resources Policy, Elsevier, vol. 75(C).
    20. Guo, Yangli & Ma, Feng & Li, Haibo & Lai, Xiaodong, 2022. "Oil price volatility predictability based on global economic conditions," International Review of Financial Analysis, Elsevier, vol. 82(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ijfiec:v:27:y:2022:i:2:p:1947-1961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1076-9307/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.