IDEAS home Printed from https://ideas.repec.org/a/eee/jocoma/v35y2024ics2405851324000370.html
   My bibliography  Save this article

Stock return predictability using economic narrative: Evidence from energy sectors

Author

Listed:
  • Ma, Tian
  • Li, Ganghui
  • Zhang, Huajing

Abstract

This paper applies the Narrative-based Energy General Index (NEG) to forecast stock returns in the energy industry. The index is constructed using natural language processing (NLP) techniques applied to news topics from The Wall Street Journal. The results indicate that NEG outperforms in predicting future returns of the energy industry in both in-sample and out-of-sample, and the predictive power surpasses that of other macroeconomic variables. The asset allocation exercise demonstrates the substantial economic value of NEG. Furthermore, we document that NEG not only exhibits superior predictive power for energy sector returns but also provides valuable insights for the whole stock market.

Suggested Citation

  • Ma, Tian & Li, Ganghui & Zhang, Huajing, 2024. "Stock return predictability using economic narrative: Evidence from energy sectors," Journal of Commodity Markets, Elsevier, vol. 35(C).
  • Handle: RePEc:eee:jocoma:v:35:y:2024:i:c:s2405851324000370
    DOI: 10.1016/j.jcomm.2024.100418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2405851324000370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jcomm.2024.100418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Economic narrative; Return predictability; Energy industry; Investor attention;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jocoma:v:35:y:2024:i:c:s2405851324000370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jcomm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.