IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v14y2017i3d10.1007_s10287-017-0280-y.html
   My bibliography  Save this article

Regularised gradient boosting for financial time-series modelling

Author

Listed:
  • Alexandros Agapitos

    (University College Dublin)

  • Anthony Brabazon

    (University College Dublin)

  • Michael O’Neill

    (University College Dublin)

Abstract

Gradient Boosting (GB) learns an additive expansion of simple basis-models. This is accomplished by iteratively fitting an elementary model to the negative gradient of a loss function with respect to the expansion’s values at each training data-point evaluated at each iteration. For the case of squared-error loss function, the negative gradient takes the form of an ordinary residual for a given training data-point. Studies have demonstrated that running GB for hundreds of iterations can lead to overfitting, while a number of authors showed that by adding noise to the training data, generalisation is impaired even with relatively few basis-models. Regularisation is realised through the shrinkage of every newly-added basis-model to the expansion. This paper demonstrates that GB with shrinkage-based regularisation is still prone to overfitting in noisy datasets. We use a transformation based on a sigmoidal function for reducing the influence of extreme values in the residuals of a GB iteration without removing them from the training set. This extension is built on top of shrinkage-based regularisation. Simulations using synthetic, noisy data show that the proposed method slows-down overfitting and reduces the generalisation error of regularised GB. The proposed method is then applied to the inherently noisy domain of financial time-series modelling. Results suggest that for the majority of datasets the method generalises better when compared against standard regularised GB, as well as against a range of other time-series modelling methods.

Suggested Citation

  • Alexandros Agapitos & Anthony Brabazon & Michael O’Neill, 2017. "Regularised gradient boosting for financial time-series modelling," Computational Management Science, Springer, vol. 14(3), pages 367-391, July.
  • Handle: RePEc:spr:comgts:v:14:y:2017:i:3:d:10.1007_s10287-017-0280-y
    DOI: 10.1007/s10287-017-0280-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-017-0280-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-017-0280-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. B. Priestley, 1980. "State‐Dependent Models: A General Approach To Non‐Linear Time Series Analysis," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 47-71, January.
    2. Huseyin Ince, 2006. "Non-Parametric Regression Methods," Computational Management Science, Springer, vol. 3(2), pages 161-174, April.
    3. Anthony Brabazon & Michael O’Neill, 2004. "Evolving technical trading rules for spot foreign-exchange markets using grammatical evolution," Computational Management Science, Springer, vol. 1(3), pages 311-327, October.
    4. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    5. Audrino, Francesco & Barone-Adesi, Giovanni, 2005. "Functional gradient descent for financial time series with an application to the measurement of market risk," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 959-977, April.
    6. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Zhidong & Hui, Yongchang & Wong, Wing-Keung, 2012. "New Non-Linearity Test to Circumvent the Limitation of Volterra Expansion," MPRA Paper 41872, University Library of Munich, Germany.
    2. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    3. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    4. Andrada-Félix, Julián & Fernández-Rodríguez, Fernando & Fuertes, Ana-Maria, 2016. "Combining nearest neighbor predictions and model-based predictions of realized variance: Does it pay?," International Journal of Forecasting, Elsevier, vol. 32(3), pages 695-715.
    5. Hui, Yongchang & Wong, Wing-Keung & Bai, Zhidong & Zhu, Zhenzhen, 2016. "A New Nonlinearity Test to Circumvent the Limitation of Volterra Expansion with Applications," MPRA Paper 75216, University Library of Munich, Germany.
    6. Huang, Alex YiHou & Hu, Wen-Cheng, 2012. "Regime switching dynamics in credit default swaps: Evidence from smooth transition autoregressive model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1497-1508.
    7. Ihle, Rico & von Cramon-Taubadel, Stephan, 2008. "A Comparison of Threshold Cointegration and Markov-Switching Vector Error Correction Models in Price Transmission Analysis," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37603, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    8. Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
    9. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    10. Chkili, Walid & Nguyen, Duc Khuong, 2014. "Exchange rate movements and stock market returns in a regime-switching environment: Evidence for BRICS countries," Research in International Business and Finance, Elsevier, vol. 31(C), pages 46-56.
    11. Manuela Goretti, 2005. "The Brazilian currency turmoil of 2002: a nonlinear analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 10(4), pages 289-306.
    12. David Andolfatto & Paul Gomme, 2003. "Monetary Policy Regimes and Beliefs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(1), pages 1-30, February.
    13. Valentina Aprigliano & Danilo Liberati, 2021. "Using Credit Variables to Date Business Cycle and to Estimate the Probabilities of Recession in Real Time," Manchester School, University of Manchester, vol. 89(S1), pages 76-96, September.
    14. DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018. "Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.
    15. Mariam Camarero & Juan Sapena & Cecilio Tamarit, 2020. "Modelling Time-Varying Parameters in Panel Data State-Space Frameworks: An Application to the Feldstein–Horioka Puzzle," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 87-114, June.
    16. Xi, Xiaojing & Mamon, Rogemar, 2011. "Parameter estimation of an asset price model driven by a weak hidden Markov chain," Economic Modelling, Elsevier, vol. 28(1-2), pages 36-46, January.
    17. Anne Morrison Piehl & Suzanne J. Cooper & Anthony A. Braga & David M. Kennedy, 2003. "Testing for Structural Breaks in the Evaluation of Programs," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 550-558, August.
    18. Sarah Arndt & Zeno Enders, 2023. "The Transmission of Supply Shocks in Different Inflation Regimes," CESifo Working Paper Series 10839, CESifo.
    19. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    20. Perron, Pierre & Wada, Tatsuma, 2016. "Measuring business cycles with structural breaks and outliers: Applications to international data," Research in Economics, Elsevier, vol. 70(2), pages 281-303.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:14:y:2017:i:3:d:10.1007_s10287-017-0280-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.