IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v50y2022ics1544612322004755.html
   My bibliography  Save this article

The role of investor attention in global asset price variation during the invasion of Ukraine

Author

Listed:
  • Halousková, Martina
  • Stašek, Daniel
  • Horváth, Matúš

Abstract

We study the impact of event-specific attention indices – based on Google Trends – in predictive price variation models before and during the Russian invasion of Ukraine in February 2022. We extend our analyses to the importance of geographical proximity and economic openness to Russia within 51 global equity markets. Our results demonstrate that 36 countries show significant attention to the conflict at the onset of and during the invasion, which helps predict volatility. We find that the impact of attention is more significant in countries with a higher degree of economic openness to Russia and those nearer to it.

Suggested Citation

  • Halousková, Martina & Stašek, Daniel & Horváth, Matúš, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Finance Research Letters, Elsevier, vol. 50(C).
  • Handle: RePEc:eee:finlet:v:50:y:2022:i:c:s1544612322004755
    DOI: 10.1016/j.frl.2022.103292
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612322004755
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2022.103292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Liyan & Xu, Yang & Yin, Libo, 2018. "Does investor attention matter? The attention-return relationships in FX markets," Economic Modelling, Elsevier, vol. 68(C), pages 644-660.
    2. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    3. David Garcia & Claudio Juan Tessone & Pavlin Mavrodiev & Nicolas Perony, 2014. "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Papers 1408.1494, arXiv.org.
    4. Lyócsa, Štefan & Baumöhl, Eduard & Výrost, Tomáš, 2022. "YOLO trading: Riding with the herd during the GameStop episode," Finance Research Letters, Elsevier, vol. 46(PA).
    5. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    6. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    7. Kirti Saxena & Madhumita Chakraborty, 2020. "Should we pay attention to investor attention in forex futures market?," Applied Economics, Taylor & Francis Journals, vol. 52(60), pages 6562-6572, December.
    8. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    9. v{S}tefan Ly'ocsa & Tom'av{s} Pl'ihal, 2022. "Russia's Ruble during the onset of the Russian invasion of Ukraine in early 2022: The role of implied volatility and attention," Papers 2205.09179, arXiv.org.
    10. Hirshleifer, David & Sheng, Jinfei, 2022. "Macro news and micro news: Complements or substitutes?," Journal of Financial Economics, Elsevier, vol. 145(3), pages 1006-1024.
    11. Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
    12. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    13. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    14. Smith, Geoffrey Peter, 2012. "Google Internet search activity and volatility prediction in the market for foreign currency," Finance Research Letters, Elsevier, vol. 9(2), pages 103-110.
    15. Aalborg, Halvor Aarhus & Molnár, Peter & de Vries, Jon Erik, 2019. "What can explain the price, volatility and trading volume of Bitcoin?," Finance Research Letters, Elsevier, vol. 29(C), pages 255-265.
    16. Aouadi, Amal & Arouri, Mohamed & Teulon, Frédéric, 2013. "Investor attention and stock market activity: Evidence from France," Economic Modelling, Elsevier, vol. 35(C), pages 674-681.
    17. Thomas Dimpfl & Stephan Jank, 2016. "Can Internet Search Queries Help to Predict Stock Market Volatility?," European Financial Management, European Financial Management Association, vol. 22(2), pages 171-192, March.
    18. Svatopluk Kapounek & Zuzana Kučerová & Evžen Kočenda, 2022. "Selective Attention in Exchange Rate Forecasting," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 23(2), pages 210-229, May.
    19. Baig, Ahmed & Blau, Benjamin M. & Sabah, Nasim, 2019. "Price clustering and sentiment in bitcoin," Finance Research Letters, Elsevier, vol. 29(C), pages 111-116.
    20. Goddard, John & Kita, Arben & Wang, Qingwei, 2015. "Investor attention and FX market volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 79-96.
    21. Yu, Jing-Rung & Chiou, W. Paul & Hung, Cing-Hung & Dong, Wen-Kuei & Chang, Yi-Hsuan, 2022. "Dynamic rebalancing portfolio models with analyses of investor sentiment," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 1-13.
    22. Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš & Širaňová, Mária, 2020. "Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    23. Huina Mao & Scott Counts & Johan Bollen, 2011. "Predicting Financial Markets: Comparing Survey, News, Twitter and Search Engine Data," Papers 1112.1051, arXiv.org.
    24. Azi Ben-Rephael & Zhi Da & Ryan D. Israelsen, 2017. "It Depends on Where You Search: Institutional Investor Attention and Underreaction to News," The Review of Financial Studies, Society for Financial Studies, vol. 30(9), pages 3009-3047.
    25. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    26. Andrea Freyer Dugas & Mehdi Jalalpour & Yulia Gel & Scott Levin & Fred Torcaso & Takeru Igusa & Richard E Rothman, 2013. "Influenza Forecasting with Google Flu Trends," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    27. Wu, You & Han, Liyan & Yin, Libo, 2019. "Our currency, your attention: Contagion spillovers of investor attention on currency returns," Economic Modelling, Elsevier, vol. 80(C), pages 49-61.
    28. Ilaria Bordino & Stefano Battiston & Guido Caldarelli & Matthieu Cristelli & Antti Ukkonen & Ingmar Weber, 2012. "Web Search Queries Can Predict Stock Market Volumes," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-17, July.
    29. Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
    30. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    31. Pesaran, M. Hashem & Vanessa Smith, L. & Yamagata, Takashi, 2013. "Panel unit root tests in the presence of a multifactor error structure," Journal of Econometrics, Elsevier, vol. 175(2), pages 94-115.
    32. Bernard Dumas & Alexander Kurshev & Raman Uppal, 2009. "Equilibrium Portfolio Strategies in the Presence of Sentiment Risk and Excess Volatility," Journal of Finance, American Finance Association, vol. 64(2), pages 579-629, April.
    33. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    34. Marcello Pericoli & Massimo Sbracia, 2003. "A Primer on Financial Contagion," Journal of Economic Surveys, Wiley Blackwell, vol. 17(4), pages 571-608, September.
    35. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    36. Urquhart, Andrew, 2018. "What causes the attention of Bitcoin?," Economics Letters, Elsevier, vol. 166(C), pages 40-44.
    37. Lyócsa, Štefan & Baumöhl, Eduard & Výrost, Tomáš & Molnár, Peter, 2020. "Fear of the coronavirus and the stock markets," Finance Research Letters, Elsevier, vol. 36(C).
    38. Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
    39. Eom, Cheoljun & Kaizoji, Taisei & Kang, Sang Hoon & Pichl, Lukas, 2019. "Bitcoin and investor sentiment: Statistical characteristics and predictability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 511-521.
    40. Daniel Andrei & Michael Hasler, 2015. "Investor Attention and Stock Market Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 33-72.
    41. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
    42. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    43. Conghui Chen & Lanlan Liu & Ningru Zhao, 2020. "Fear Sentiment, Uncertainty, and Bitcoin Price Dynamics: The Case of COVID-19," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(10), pages 2298-2309, August.
    44. Bijl, Laurens & Kringhaug, Glenn & Molnár, Peter & Sandvik, Eirik, 2016. "Google searches and stock returns," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 150-156.
    45. David Hirshleifer & Sonya S. Lim & Siew Hong Teoh, 2011. "Limited Investor Attention and Stock Market Misreactions to Accounting Information," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 1(1), pages 35-73.
    46. Alessandra Cretarola & Gianna Figà-Talamanca & Marco Patacca, 2020. "Market attention and Bitcoin price modeling: theory, estimation and option pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 187-228, June.
    47. Okorie, David Iheke & Lin, Boqiang, 2021. "Stock markets and the COVID-19 fractal contagion effects," Finance Research Letters, Elsevier, vol. 38(C).
    48. Brad M. Barber & Terrance Odean, 2008. "All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 785-818, April.
    49. Mario Maggi & Pierpaolo Uberti, 2021. "Google search volumes for portfolio management: performances and asset concentration," Annals of Operations Research, Springer, vol. 299(1), pages 163-175, April.
    50. Joseph, Kissan & Babajide Wintoki, M. & Zhang, Zelin, 2011. "Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1116-1127, October.
    51. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    52. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    53. Lyócsa, Štefan & Plíhal, Tomáš, 2022. "Russia’s ruble during the onset of the Russian invasion of Ukraine in early 2022: The role of implied volatility and attention," Finance Research Letters, Elsevier, vol. 48(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martina Halouskov'a & Daniel Stav{s}ek & Mat'uv{s} Horv'ath, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Papers 2205.05985, arXiv.org, revised Aug 2022.
    2. Lyócsa, Štefan & Halousková, Martina & Haugom, Erik, 2023. "The US banking crisis in 2023: Intraday attention and price variation of banks at risk," Finance Research Letters, Elsevier, vol. 57(C).
    3. Goodell, John W. & Kumar, Satish & Li, Xiao & Pattnaik, Debidutta & Sharma, Anuj, 2022. "Foundations and research clusters in investor attention: Evidence from bibliometric and topic modelling analysis," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 511-529.
    4. Papadamou, Stephanos & Fassas, Athanasios & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2020. "Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis," MPRA Paper 100020, University Library of Munich, Germany.
    5. Lyócsa, Štefan & Baumöhl, Eduard & Výrost, Tomáš, 2022. "YOLO trading: Riding with the herd during the GameStop episode," Finance Research Letters, Elsevier, vol. 46(PA).
    6. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
    7. Papadamou, Stephanos & Fassas, Athanasios P. & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2023. "Effects of the first wave of COVID-19 pandemic on implied stock market volatility: International evidence using a google trend measure," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).
    8. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2024. "Google search trends and stock markets: Sentiment, attention or uncertainty?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    9. Smales, L.A., 2021. "Investor attention and global market returns during the COVID-19 crisis," International Review of Financial Analysis, Elsevier, vol. 73(C).
    10. Ramos, Sofia B. & Latoeiro, Pedro & Veiga, Helena, 2020. "Limited attention, salience of information and stock market activity," Economic Modelling, Elsevier, vol. 87(C), pages 92-108.
    11. Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
    12. Hervé, Fabrice & Zouaoui, Mohamed & Belvaux, Bertrand, 2019. "Noise traders and smart money: Evidence from online searches," Economic Modelling, Elsevier, vol. 83(C), pages 141-149.
    13. Chaiyuth Padungsaksawasdi & Sirimon Treepongkaruna & Robert Brooks, 2019. "Investor Attention and Stock Market Activities: New Evidence from Panel Data," IJFS, MDPI, vol. 7(2), pages 1-19, June.
    14. Pham, Linh & Cepni, Oguzhan, 2022. "Extreme directional spillovers between investor attention and green bond markets," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 186-210.
    15. Christophe Desagre & Catherine D'Hondt, 2020. "Googlization and retail investors' trading activity," LIDAM Discussion Papers LFIN 2020004, Université catholique de Louvain, Louvain Finance (LFIN).
    16. Kim, Neri & Lučivjanská, Katarína & Molnár, Peter & Villa, Roviel, 2019. "Google searches and stock market activity: Evidence from Norway," Finance Research Letters, Elsevier, vol. 28(C), pages 208-220.
    17. Al Guindy, Mohamed, 2021. "Cryptocurrency price volatility and investor attention," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 556-570.
    18. Smales, L.A., 2022. "Investor attention in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 79(C).
    19. Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
    20. Lyócsa, Štefan & Molnár, Peter & Plíhal, Tomáš & Širaňová, Mária, 2020. "Impact of macroeconomic news, regulation and hacking exchange markets on the volatility of bitcoin," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:50:y:2022:i:c:s1544612322004755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.