IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.08726.html
   My bibliography  Save this paper

Analyst Reports and Stock Performance: Evidence from the Chinese Market

Author

Listed:
  • Rui Liu
  • Jiayou Liang
  • Haolong Chen
  • Yujia Hu

Abstract

This article applies natural language processing (NLP) to extract and quantify textual information to predict stock performance. Using an extensive dataset of Chinese analyst reports and employing a customized BERT deep learning model for Chinese text, this study categorizes the sentiment of the reports as positive, neutral, or negative. The findings underscore the predictive capacity of this sentiment indicator for stock volatility, excess returns, and trading volume. Specifically, analyst reports with strong positive sentiment will increase excess return and intraday volatility, and vice versa, reports with strong negative sentiment also increase volatility and trading volume, but decrease future excess return. The magnitude of this effect is greater for positive sentiment reports than for negative sentiment reports. This article contributes to the empirical literature on sentiment analysis and the response of the stock market to news in the Chinese stock market.

Suggested Citation

  • Rui Liu & Jiayou Liang & Haolong Chen & Yujia Hu, 2024. "Analyst Reports and Stock Performance: Evidence from the Chinese Market," Papers 2411.08726, arXiv.org.
  • Handle: RePEc:arx:papers:2411.08726
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.08726
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ashour, Samar & Hao, Grace Qing & Harper, Adam, 2023. "Investor sentiment, style investing, and momentum," Journal of Financial Markets, Elsevier, vol. 62(C).
    2. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    3. Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015. "Investor Sentiment Aligned: A Powerful Predictor of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 791-837.
    4. Jiang, George J. & Lu, Liangliang & Zhu, Dongming, 2014. "The information content of analyst recommendation revisions — Evidence from the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 29(C), pages 1-17.
    5. Ardia, David & Bluteau, Keven & Boudt, Kris, 2022. "Media abnormal tone, earnings announcements, and the stock market," Journal of Financial Markets, Elsevier, vol. 61(C).
    6. Liang, Chao & Tang, Linchun & Li, Yan & Wei, Yu, 2020. "Which sentiment index is more informative to forecast stock market volatility? Evidence from China," International Review of Financial Analysis, Elsevier, vol. 71(C).
    7. Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
    8. Jinghong Shu & Jin E. Zhang, 2006. "Testing range estimators of historical volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(3), pages 297-313, March.
    9. Die Wan & Ke Cheng & Xiaoguang Yang, 2014. "The reverse volatility asymmetry in Chinese financial market," Applied Financial Economics, Taylor & Francis Journals, vol. 24(24), pages 1555-1575, December.
    10. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    11. Stambaugh, Robert F. & Yu, Jianfeng & Yuan, Yu, 2012. "The short of it: Investor sentiment and anomalies," Journal of Financial Economics, Elsevier, vol. 104(2), pages 288-302.
    12. Wu, Yanran & Liu, Tingting & Han, Liyan & Yin, Libo, 2018. "Optimistic bias of analysts' earnings forecasts: Does investor sentiment matter in China?," Pacific-Basin Finance Journal, Elsevier, vol. 49(C), pages 147-163.
    13. Liang, Dawei & Pan, Yukun & Du, Qianqian & Zhu, Ling, 2022. "The information content of analysts’ textual reports and stock returns: Evidence from China," Finance Research Letters, Elsevier, vol. 46(PB).
    14. John S. Howe & Emre Unlu & Xuemin (Sterling) Yan, 2009. "The Predictive Content of Aggregate Analyst Recommendations," Journal of Accounting Research, Wiley Blackwell, vol. 47(3), pages 799-821, June.
    15. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    16. Asquith, Paul & Mikhail, Michael B. & Au, Andrea S., 2005. "Information content of equity analyst reports," Journal of Financial Economics, Elsevier, vol. 75(2), pages 245-282, February.
    17. Zeitun, Rami & Rehman, Mobeen Ur & Ahmad, Nasir & Vo, Xuan Vinh, 2023. "The impact of Twitter-based sentiment on US sectoral returns," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    18. Chunxin Jia & Yaping Wang & Wei Xiong, 2017. "Market Segmentation and Differential Reactions of Local and Foreign Investors to Analyst Recommendations," The Review of Financial Studies, Society for Financial Studies, vol. 30(9), pages 2972-3008.
    19. Roger K. Loh, 2010. "Investor Inattention and the Underreaction to Stock Recommendations," Financial Management, Financial Management Association International, vol. 39(3), pages 1223-1252, September.
    20. Craig Lewis & Steven Young, 2019. "Fad or future? Automated analysis of financial text and its implications for corporate reporting," Accounting and Business Research, Taylor & Francis Journals, vol. 49(5), pages 587-615, July.
    21. Allen H. Huang & Reuven Lehavy & Amy Y. Zang & Rong Zheng, 2018. "Analyst Information Discovery and Interpretation Roles: A Topic Modeling Approach," Management Science, INFORMS, vol. 64(6), pages 2833-2855, June.
    22. Xu, Liao & Zhang, Xuan & Zhao, Jing, 2023. "Limited investor attention and biased reactions to information: Evidence from the COVID-19 pandemic," Journal of Financial Markets, Elsevier, vol. 62(C).
    23. Kim, Karam & Ryu, Doojin & Yang, Heejin, 2021. "Information uncertainty, investor sentiment, and analyst reports," International Review of Financial Analysis, Elsevier, vol. 77(C).
    24. William H. Beaver & Maureen F. McNichols & Zach Z. Wang, 2018. "The information content of earnings announcements: new insights from intertemporal and cross-sectional behavior," Review of Accounting Studies, Springer, vol. 23(1), pages 95-135, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongan Xu & Jianqiong Wang & Zhonglu Chen & Chao Liang, 2023. "Sentiment indices and stock returns: Evidence from China," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 1063-1080, January.
    2. Amanjot Singh & Harminder Singh & Venura Welagedara, 2024. "Aggregate uncertainty, information acquisition, and analyst stock recommendations," International Review of Finance, International Review of Finance Ltd., vol. 24(4), pages 604-640, December.
    3. Lee, Geul & Ryu, Doojin, 2024. "Investor sentiment or information content? A simple test for investor sentiment proxies," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    4. Junni L. Zhang & Wolfgang Karl Hardle & Cathy Y. Chen & Elisabeth Bommes, 2020. "Distillation of News Flow into Analysis of Stock Reactions," Papers 2009.10392, arXiv.org.
    5. Gong, Xue & Zhang, Weiguo & Wang, Junbo & Wang, Chao, 2022. "Investor sentiment and stock volatility: New evidence," International Review of Financial Analysis, Elsevier, vol. 80(C).
    6. Kim, Karam & Ryu, Doojin & Yang, Heejin, 2021. "Information uncertainty, investor sentiment, and analyst reports," International Review of Financial Analysis, Elsevier, vol. 77(C).
    7. Zhang, Yuan-Yuan & Zhang, Yue-Jun, 2022. "The impact of institutional analyst forecast divergence on crude oil market: Evidence from the mixed frequency models," International Review of Financial Analysis, Elsevier, vol. 84(C).
    8. Gu, Chen & Kurov, Alexander, 2020. "Informational role of social media: Evidence from Twitter sentiment," Journal of Banking & Finance, Elsevier, vol. 121(C).
    9. Zhang, Junni L. & Härdle, Wolfgang Karl & Chen, Cathy Y. & Bommes, Elisabeth, 2015. "Distillation of news flow into analysis of stock reactions," SFB 649 Discussion Papers 2015-005, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Gaoshan Wang & Guangjin Yu & Xiaohong Shen, 2020. "The Effect of Online Investor Sentiment on Stock Movements: An LSTM Approach," Complexity, Hindawi, vol. 2020, pages 1-11, December.
    11. Li, Zhimin & Zhu, Weidong & Wu, Yong & Wu, Zihao, 2024. "Research on information fusion of security analysts’ stock recommendations based on two-dimensional D-S evidence theory," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    12. Zhang, Hang & Tsai, Wei-Che & Weng, Pei-Shih & Tsai, Pin-Chieh, 2023. "Overnight returns and investor sentiment: Further evidence from the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 80(C).
    13. Lin, Chu-Bin & Chou, Robin K. & Wang, George H.K., 2018. "Investor sentiment and price discovery: Evidence from the pricing dynamics between the futures and spot markets," Journal of Banking & Finance, Elsevier, vol. 90(C), pages 17-31.
    14. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    15. Chen, Zhongdong & Daves, Phillip R., 2018. "The January sentiment effect in the U.S. stock market," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 94-104.
    16. Mahmoudi, Nader & Docherty, Paul & Melia, Adrian, 2022. "Firm-level investor sentiment and corporate announcement returns," Journal of Banking & Finance, Elsevier, vol. 144(C).
    17. repec:hum:wpaper:sfb649dp2015-005 is not listed on IDEAS
    18. Wang, Gaoshan & Yu, Guangjin & Shen, Xiaohong, 2021. "The effect of online environmental news on green industry stocks: The mediating role of investor sentiment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    19. Ruan, Qingsong & Wang, Zilin & Zhou, Yaping & Lv, Dayong, 2020. "A new investor sentiment indicator (ISI) based on artificial intelligence: A powerful return predictor in China," Economic Modelling, Elsevier, vol. 88(C), pages 47-58.
    20. Haibin Xie & Shouyang Wang, 2018. "Timing the market: the economic value of price extremes," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-24, December.
    21. Lansing, Kevin J. & LeRoy, Stephen F. & Ma, Jun, 2022. "Examining the sources of excess return predictability: Stochastic volatility or market inefficiency?," Journal of Economic Behavior & Organization, Elsevier, vol. 197(C), pages 50-72.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.08726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.