Forecasting US GDP growth rates in a rich environment of macroeconomic data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.iref.2024.103476
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gonzalo Camba-Mendez & George Kapetanios & Richard J. Smith & Martin R. Weale, 2001.
"An automatic leading indicator of economic activity: forecasting GDP growth for European countries,"
Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-37.
- Dr Martin Weale, 1999. "An Automatic Leading Indicator of Economic Activity: Forecasting GDP Growth for European Countries," National Institute of Economic and Social Research (NIESR) Discussion Papers 149, National Institute of Economic and Social Research.
- Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
- Berger, Allen N. & Bouwman, Christa H.S., 2013. "How does capital affect bank performance during financial crises?," Journal of Financial Economics, Elsevier, vol. 109(1), pages 146-176.
- Fabiano Schivardi & Enrico Sette & Guido Tabellini, 2022.
"Credit Misallocation During the European Financial Crisis,"
The Economic Journal, Royal Economic Society, vol. 132(641), pages 391-423.
- Fabiano Schivardi & Enrico Sette & Guido Tabellini, 2017. "Credit misallocation during the European financial crisis," Temi di discussione (Economic working papers) 1139, Bank of Italy, Economic Research and International Relations Area.
- Fabiano Schivardi & Enrico Sette & Guido Tabellini, 2018. "Credit Misallocation During the European Financial Crisis," Working Papers LuissLab 18139, Dipartimento di Economia e Finanza, LUISS Guido Carli.
- Fabiano Schivardi & Enrico Sette & Guido Tabellini, 2017. "Credit Misallocation During the European Financial Crisis," BAFFI CAREFIN Working Papers 1753, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
- Fabiano Schivardi & Enrico Sette & Guido Tabellini, 2017. "Credit Misallocation During the European Financial Crisis," Working Papers 600, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Schivardi, Fabiano & Tabellini, Guido & Sette, Enrico, 2017. "Credit Misallocation During the European Financial Crisis," CEPR Discussion Papers 11901, C.E.P.R. Discussion Papers.
- Schivardi, Fabiano & Sette, Enrico & Tabellini, Guido, 2017. "Credit Misallocation During the European Financial Crisis," LEAP Working Papers 2017/3, Luiss Institute for European Analysis and Policy.
- Fabiano Schivardi & Enrico Sette & Guido Tabellini, 2017. "Credit Misallocation During the European Financial Crisis," CESifo Working Paper Series 6406, CESifo.
- Fabiano Schivardi & Enrico Sette & Guido Tabellini, 2017. "Credit Misallocation During the European Financial Crisis," EIEF Working Papers Series 1704, Einaudi Institute for Economics and Finance (EIEF), revised Mar 2018.
- Fabiano Schivardi & Enrico Sette & Guido Tabellini, 2017. "Credit misallocation during the European financial crisis," BIS Working Papers 669, Bank for International Settlements.
- Michael W. McCracken & Serena Ng, 2016.
"FRED-MD: A Monthly Database for Macroeconomic Research,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
- Michael W. McCracken & Serena Ng, 2015. "FRED-MD: A Monthly Database for Macroeconomic Research," Working Papers 2015-12, Federal Reserve Bank of St. Louis.
- Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
- Baumeister, Christiane & Guérin, Pierre, 2021.
"A comparison of monthly global indicators for forecasting growth,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," NBER Working Papers 28014, National Bureau of Economic Research, Inc.
- Christiane Baumeister & Pierre Guérin, 2020. "A comparison of monthly global indicators for forecasting growth," CAMA Working Papers 2020-93, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CESifo Working Paper Series 8656, CESifo.
- Baumeister, Christiane & Guerin, Pierre, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CEPR Discussion Papers 15403, C.E.P.R. Discussion Papers.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Lu, Fei & Ma, Feng & Li, Pan & Huang, Dengshi, 2022. "Natural gas volatility predictability in a data-rich world," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Dashan Huang & Fuwei Jiang & Kunpeng Li & Guoshi Tong & Guofu Zhou, 2022.
"Scaled PCA: A New Approach to Dimension Reduction,"
Management Science, INFORMS, vol. 68(3), pages 1678-1695, March.
- Dashan Huang & Fuwei Jiang & Kunpeng Li & Guoshi Tong & Guofu Zhou, 2022. "Scaled PCA: A New Approach to Dimension Reduction," CEMA Working Papers 678, China Economics and Management Academy, Central University of Finance and Economics.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- repec:dau:papers:123456789/10080 is not listed on IDEAS
- Garnitz, Johanna & Lehmann, Robert & Wohlrabe, Klaus, 2019.
"Forecasting GDP all over the world using leading indicators based on comprehensive survey data,"
EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 51(54), pages 5802-5816.
- Johanna Garnitz & Robert Lehmann & Klaus Wohlrabe, 2019. "Forecasting GDP all over the world using leading indicators based on comprehensive survey data," Applied Economics, Taylor & Francis Journals, vol. 51(54), pages 5802-5816, November.
- Garnitz, Johanna & Lehmann, Robert & Wohlrabe, Klaus, 2017. "Forecasting GDP all over the World: Evidence from Comprehensive Survey Data," MPRA Paper 81772, University Library of Munich, Germany.
- Garnitz, Johanna & Lehmann, Robert & Wohlrabe, Klaus, 2019. "Forecasting GDP all over the world using leading indicators based on comprehensive survey data," Munich Reprints in Economics 78264, University of Munich, Department of Economics.
- Johanna Garnitz & Robert Lehmann & Klaus Wohlrabe, 2019. "Forecasting GDP all over the world using leading indicators based on comprehensive survey data," CESifo Working Paper Series 7691, CESifo.
- Venkat Kuppuswamy & Belén Villalonga, 2016. "Does Diversification Create Value in the Presence of External Financing Constraints? Evidence from the 2007–2009 Financial Crisis," Management Science, INFORMS, vol. 62(4), pages 905-923, April.
- Jokubaitis, Saulius & Celov, Dmitrij & Leipus, Remigijus, 2021. "Sparse structures with LASSO through principal components: Forecasting GDP components in the short-run," International Journal of Forecasting, Elsevier, vol. 37(2), pages 759-776.
- Stock, James H. & Watson, Mark W., 1999.
"Business cycle fluctuations in us macroeconomic time series,"
Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 1, pages 3-64,
Elsevier.
- James H. Stock & Mark W. Watson, 1998. "Business Cycle Fluctuations in U.S. Macroeconomic Time Series," NBER Working Papers 6528, National Bureau of Economic Research, Inc.
- Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
- Barbara Rossi & Atsushi Inoue, 2012.
"Out-of-Sample Forecast Tests Robust to the Choice of Window Size,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
- Rossi, Barbara & Inoue, Atsushi, 2011. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," CEPR Discussion Papers 8542, C.E.P.R. Discussion Papers.
- Atsushi Inoue & Barbara Rossi, 2011. "Out-of-sample forecast tests robust to the choice of window size," Working Papers 11-31, Federal Reserve Bank of Philadelphia.
- Barbara Rossi & Atsushi Inoue, 2012. "Out-of-sample forecast tests robust to the choice of window size," Economics Working Papers 1404, Department of Economics and Business, Universitat Pompeu Fabra.
- Lutz Kilian & Robert J. Vigfusson, 2013.
"Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 78-93, January.
- Lutz Kilian & Robert J. Vigfusson, 2012. "Do oil prices help forecast U.S. real GDP? the role of nonlinearities and asymmetries," International Finance Discussion Papers 1050, Board of Governors of the Federal Reserve System (U.S.).
- Kilian, Lutz & Vigfusson, Robert J., 2012. "Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries," CEPR Discussion Papers 8980, C.E.P.R. Discussion Papers.
- Götz, Thomas B. & Knetsch, Thomas A., 2019.
"Google data in bridge equation models for German GDP,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
- Götz, Thomas B. & Knetsch, Thomas A., 2017. "Google data in bridge equation models for German GDP," Discussion Papers 18/2017, Deutsche Bundesbank.
- Barsoum, Fady & Stankiewicz, Sandra, 2015.
"Forecasting GDP growth using mixed-frequency models with switching regimes,"
International Journal of Forecasting, Elsevier, vol. 31(1), pages 33-50.
- Fady Barsoum & Sandra Stankiewicz, 2013. "Forecasting GDP Growth Using Mixed-Frequency Models With Switching Regimes," Working Paper Series of the Department of Economics, University of Konstanz 2013-10, Department of Economics, University of Konstanz.
- Foroni, Claudia & Marcellino, Massimiliano & Stevanovic, Dalibor, 2022.
"Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 596-612.
- Claudia Foroni & Massimiliano Marcellino & Dalibor Stevanovic, 2020. "Forecasting the COVID-19 recession and recovery: Lessons from the financial crisis," Working Papers 20-14, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2020.
- Marcellino, Massimiliano & Foroni, Claudia & Stevanovic, Dalibor, 2020. "Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis," CEPR Discussion Papers 15114, C.E.P.R. Discussion Papers.
- Claudia Foroni & Massimiliano Marcellino & Dalibor Stevanovic, 2020. "Forecasting the Covid-19 Recession and Recovery: Lessons from the Financial Crisis," CIRANO Working Papers 2020s-32, CIRANO.
- Foroni, Claudia & Marcellino, Massimiliano & Stevanović, Dalibor, 2020. "Forecasting the Covid-19 recession and recovery: lessons from the financial crisis," Working Paper Series 2468, European Central Bank.
- Pär Stockhammar & Pär Österholm, 2016.
"Effects of US policy uncertainty on Swedish GDP growth,"
Empirical Economics, Springer, vol. 50(2), pages 443-462, March.
- Stockhammar, Pär & Österholm, Pär, 2014. "Effects of US Policy Uncertainty on Swedish GDP Growth," Working Papers 135, National Institute of Economic Research.
- J. Steven Landefeld & Eugene P. Seskin & Barbara M. Fraumeni, 2008. "Taking the Pulse of the Economy: Measuring GDP," Journal of Economic Perspectives, American Economic Association, vol. 22(2), pages 193-216, Spring.
- Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- Ericsson, Neil R., 2016.
"Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
- Neil R. Ericsson, 2015. "Eliciting GDP Forecasts from the FOMC’s Minutes Around the Financial Crisis," Working Papers 2015-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Neil R. Ericsson, 2015. "Eliciting GDP Forecasts from the FOMC’s Minutes Around the Financial Crisis," International Finance Discussion Papers 1152, Board of Governors of the Federal Reserve System (U.S.).
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
- Francesco Audrino & Yujia Hu, 2016.
"Volatility Forecasting: Downside Risk, Jumps and Leverage Effect,"
Econometrics, MDPI, vol. 4(1), pages 1-24, February.
- Audrino, Francesco & Hu, Yujia, 2011. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Economics Working Paper Series 1138, University of St. Gallen, School of Economics and Political Science.
- Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
- C. Marsilli, 2014. "Variable Selection in Predictive MIDAS Models," Working papers 520, Banque de France.
- Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010.
"Regression models with mixed sampling frequencies,"
Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
- Elena Andreou, Eric Ghysels & Eric Ghysels & Andros Kourtellos, 2007. "Regression Models with Mixed Sampling Frequencies," University of Cyprus Working Papers in Economics 8-2007, University of Cyprus Department of Economics.
- Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
- Adlai Fisher & Charles Martineau & Jinfei Sheng, 2022. "Macroeconomic Attention and Announcement Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 35(11), pages 5057-5093.
- Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
- Marie Bessec & Othman Bouabdallah, 2015.
"Forecasting GDP over the Business Cycle in a Multi-Frequency and Data-Rich Environment,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(3), pages 360-384, June.
- Bessec, M. & Bouabdallah, O., 2012. "Forecasting GDP over the business cycle in a multi-frequency and data-rich environment," Working papers 384, Banque de France.
- Marie Bessec & Othman Bouabdallah, 2015. "Forecasting GDP over the business cycle in a multi-frequency and data-rich environment," Post-Print hal-01275760, HAL.
- Nouriel Roubini & Jeffrey Sachs, 1989. "Government Spending and Budget Deficits in the Industrial Economies," NBER Working Papers 2919, National Bureau of Economic Research, Inc.
- George S. Atsalakis & Elie Bouri & Fotios Pasiouras, 2021. "Natural disasters and economic growth: a quantile on quantile approach," Annals of Operations Research, Springer, vol. 306(1), pages 83-109, November.
- Marcin Kacperczyk & Stijn Van Nieuwerburgh & Laura Veldkamp, 2016. "A Rational Theory of Mutual Funds' Attention Allocation," Econometrica, Econometric Society, vol. 84, pages 571-626, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lu, Fei & Ma, Feng & Feng, Lin, 2024. "Carbon dioxide emissions and economic growth: New evidence from GDP forecasting," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
- Lu, Fei & Ma, Feng & Hu, Shiyang, 2024. "Does energy consumption play a key role? Re-evaluating the energy consumption-economic growth nexus from GDP growth rates forecasting," Energy Economics, Elsevier, vol. 129(C).
- Lu, Fei & Ma, Feng & Li, Pan & Huang, Dengshi, 2022. "Natural gas volatility predictability in a data-rich world," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Lu, Fei & Ma, Feng & Guo, Qiang, 2023. "Less is more? New evidence from stock market volatility predictability," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
- Guo, Yangli & He, Feng & Liang, Chao & Ma, Feng, 2022. "Oil price volatility predictability: New evidence from a scaled PCA approach," Energy Economics, Elsevier, vol. 105(C).
- Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
- Liang, Chao & Wang, Lu & Duong, Duy, 2024. "More attention and better volatility forecast accuracy: How does war attention affect stock volatility predictability?," Journal of Economic Behavior & Organization, Elsevier, vol. 218(C), pages 1-19.
- Guo, Yangli & Ma, Feng & Li, Haibo & Lai, Xiaodong, 2022. "Oil price volatility predictability based on global economic conditions," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Nonejad, Nima, 2021. "Predicting equity premium using news-based economic policy uncertainty: Not all uncertainty changes are equally important," International Review of Financial Analysis, Elsevier, vol. 77(C).
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, March.
- Chen, Zhonglu & Zhang, Li & Weng, Chen, 2023. "Does climate policy uncertainty affect Chinese stock market volatility?," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 369-381.
- Chao Liang & Yu Wei & Likun Lei & Feng Ma, 2022. "Global equity market volatility forecasting: New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 594-609, January.
- Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
- Ma, Feng & Guo, Yangli & Chevallier, Julien & Huang, Dengshi, 2022. "Macroeconomic attention, economic policy uncertainty, and stock volatility predictability," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Feng Ma & M. I. M. Wahab & Julien Chevallier & Ziyang Li, 2023. "A tug of war of forecasting the US stock market volatility: Oil futures overnight versus intraday information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 60-75, January.
- He, Mengxi & Wang, Yudong & Zeng, Qing & Zhang, Yaojie, 2023. "Forecasting aggregate stock market volatility with industry volatilities: The role of spillover index," Research in International Business and Finance, Elsevier, vol. 65(C).
- Fameliti Stavroula & Skintzi Vasiliki, 2024. "Macroeconomic attention and commodity market volatility," Empirical Economics, Springer, vol. 67(5), pages 1967-2007, November.
- Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2024. "Machine-learning stock market volatility: Predictability, drivers, and economic value," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021.
"Machine learning and oil price point and density forecasting,"
Energy Economics, Elsevier, vol. 102(C).
- Alexandre Bonnet R. Costa & Pedro Cavalcanti G. Ferreira & Wagner P. Gaglianone & Osmani Teixeira C. Guillén & João Victor Issler & Yihao Lin, 2021. "Machine Learning and Oil Price Point and Density Forecasting," Working Papers Series 544, Central Bank of Brazil, Research Department.
More about this item
Keywords
US GDP growth rate; Macroeconomic variables; Macroeconomic attention indices; Macroeconomic risks; MIDAS-LASSO;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:95:y:2024:i:c:s1059056024004684. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.