Renewable energy stocks forecast using Twitter investor sentiment and deep learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.eneco.2022.106285
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Peter Gabrovšek & Darko Aleksovski & Igor Mozetič & Miha Grčar, 2017. "Twitter sentiment around the Earnings Announcement events," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
- Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
- Sadorsky, Perry, 2012. "Modeling renewable energy company risk," Energy Policy, Elsevier, vol. 40(C), pages 39-48.
- Ding, Zhihua & Liu, Zhenhua & Zhang, Yuejun & Long, Ruyin, 2017. "The contagion effect of international crude oil price fluctuations on Chinese stock market investor sentiment," Applied Energy, Elsevier, vol. 187(C), pages 27-36.
- Campos, I. & Cortazar, G. & Reyes, T., 2017. "Modeling and predicting oil VIX: Internet search volume versus traditional mariables," Energy Economics, Elsevier, vol. 66(C), pages 194-204.
- Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
- Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
- Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
- Saeed, Tareq & Bouri, Elie & Alsulami, Hamed, 2021. "Extreme return connectedness and its determinants between clean/green and dirty energy investments," Energy Economics, Elsevier, vol. 96(C).
- Renault, Thomas, 2017.
"Intraday online investor sentiment and return patterns in the U.S. stock market,"
Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
- Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Post-Print hal-03205113, HAL.
- Broadstock, David C. & Zhang, Dayong, 2019. "Social-media and intraday stock returns: The pricing power of sentiment," Finance Research Letters, Elsevier, vol. 30(C), pages 116-123.
- Ghoddusi, Hamed & Creamer, Germán G. & Rafizadeh, Nima, 2019. "Machine learning in energy economics and finance: A review," Energy Economics, Elsevier, vol. 81(C), pages 709-727.
- Gupta, Kartick & Banerjee, Rajabrata, 2019. "Does OPEC news sentiment influence stock returns of energy firms in the United States?," Energy Economics, Elsevier, vol. 77(C), pages 34-45.
- Rama Cont, 2007. "Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 289-309, Springer.
- Li, Sufang & Zhang, Hu & Yuan, Di, 2019. "Investor attention and crude oil prices: Evidence from nonlinear Granger causality tests," Energy Economics, Elsevier, vol. 84(C).
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Afkhami, Mohamad & Cormack, Lindsey & Ghoddusi, Hamed, 2017. "Google search keywords that best predict energy price volatility," Energy Economics, Elsevier, vol. 67(C), pages 17-27.
- Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205113, HAL.
- Robert J. Shiller, 2003.
"From Efficient Markets Theory to Behavioral Finance,"
Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 83-104, Winter.
- Robert J. Shiller, 2002. "From Efficient Market Theory to Behavioral Finance," Cowles Foundation Discussion Papers 1385, Cowles Foundation for Research in Economics, Yale University.
- Emna Mnif & Anis Jarboui & M. Kabir Hassan & Khaireddine Mouakhar, 2020.
"Big data tools for Islamic financial analysis,"
Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(1), pages 10-21, January.
- E. Mnif & A. Jarboui & M.K. Hassan & K. Mouakhar, 2020. "Big Data Tools for Islamic Financial Analysis," Post-Print hal-04457135, HAL.
- Gabriele Ranco & Darko Aleksovski & Guido Caldarelli & Miha Grčar & Igor Mozetič, 2015. "The Effects of Twitter Sentiment on Stock Price Returns," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
- Zeqiraj, Veton & Sohag, Kazi & Soytas, Ugur, 2020. "Stock market development and low-carbon economy: The role of innovation and renewable energy," Energy Economics, Elsevier, vol. 91(C).
- Behrendt, Simon & Schmidt, Alexander, 2018. "The Twitter myth revisited: Intraday investor sentiment, Twitter activity and individual-level stock return volatility," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 355-367.
- Zhang, Yaojie & Zeng, Qing & Ma, Feng & Shi, Benshan, 2019. "Forecasting stock returns: Do less powerful predictors help?," Economic Modelling, Elsevier, vol. 78(C), pages 32-39.
- Tiantian Liu & Shigeyuki Hamori, 2021. "Does Investor Sentiment Affect Clean Energy Stock? Evidence from TVP-VAR-Based Connectedness Approach," Energies, MDPI, vol. 14(12), pages 1-21, June.
- Asl, Mahdi Ghaemi & Canarella, Giorgio & Miller, Stephen M., 2021.
"Dynamic asymmetric optimal portfolio allocation between energy stocks and energy commodities: Evidence from clean energy and oil and gas companies,"
Resources Policy, Elsevier, vol. 71(C).
- Mahdi Ghaemi Asl & Giorgio Canarella & Stephen M. Miller, 2020. "Dynamic Asymmetric Optimal Portfolio Allocation between Energy Stocks and Energy Commodities: Evidence from Clean Energy and Oil and Gas Companies," Working papers 2020-07, University of Connecticut, Department of Economics.
- Dutta, Anupam & Bouri, Elie & Saeed, Tareq & Vo, Xuan Vinh, 2020. "Impact of energy sector volatility on clean energy assets," Energy, Elsevier, vol. 212(C).
- Geng, Jiang-Bo & Chen, Fu-Rui & Ji, Qiang & Liu, Bing-Yue, 2021. "Network connectedness between natural gas markets, uncertainty and stock markets," Energy Economics, Elsevier, vol. 95(C).
- Doojin Ryu & Hyeyoen Kim & Heejin Yang, 2017. "Investor sentiment, trading behavior and stock returns," Applied Economics Letters, Taylor & Francis Journals, vol. 24(12), pages 826-830, July.
- Han, Liyan & Lv, Qiuna & Yin, Libo, 2017. "Can investor attention predict oil prices?," Energy Economics, Elsevier, vol. 66(C), pages 547-558.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Li, Yuze & Jiang, Shangrong & Li, Xuerong & Wang, Shouyang, 2021. "The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach," Energy Economics, Elsevier, vol. 95(C).
- Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
- Pereira, Eder Johnson de Area Leão & Ferreira, Paulo Jorge Silveira & Silva, Marcus Fernandes da & Miranda, Jose Garcia Vivas & Pereira, H.B. B., 2019. "Multiscale network for 20 stock markets using DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 529(C).
- Chen, Jiayuan & Muckley, Cal B. & Bredin, Don, 2017. "Is information assimilated at announcements in the European carbon market?," Energy Economics, Elsevier, vol. 63(C), pages 234-247.
- Dawar, Ishaan & Dutta, Anupam & Bouri, Elie & Saeed, Tareq, 2021. "Crude oil prices and clean energy stock indices: Lagged and asymmetric effects with quantile regression," Renewable Energy, Elsevier, vol. 163(C), pages 288-299.
- Ma, Yu & Luan, Zhiqian, 2022. "Ethereum synchronicity, upside volatility and Bitcoin crash risk," Finance Research Letters, Elsevier, vol. 46(PA).
- Song, Yingjie & Ji, Qiang & Du, Ya-Juan & Geng, Jiang-Bo, 2019. "The dynamic dependence of fossil energy, investor sentiment and renewable energy stock markets," Energy Economics, Elsevier, vol. 84(C).
- Schnaubelt, Matthias & Fischer, Thomas G. & Krauss, Christopher, 2020. "Separating the signal from the noise – Financial machine learning for Twitter," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
- Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of Twitter sentiment on renewable energy stocks," Energy Economics, Elsevier, vol. 76(C), pages 153-169.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Efstathios Polyzos & Ghulame Rubbaniy & Mieszko Mazur, 2024. "Efficient Market Hypothesis on the blockchain: A social‐media‐based index for cryptocurrency efficiency," The Financial Review, Eastern Finance Association, vol. 59(3), pages 807-829, August.
- Ahmed, Walid M.A. & Sleem, Mohamed A.E., 2023. "Short- and long-run determinants of the price behavior of US clean energy stocks: A dynamic ARDL simulations approach," Energy Economics, Elsevier, vol. 124(C).
- Yang, Kun & Cheng, Zishu & Li, Mingchen & Wang, Shouyang & Wei, Yunjie, 2024. "Fortify the investment performance of crude oil market by integrating sentiment analysis and an interval-based trading strategy," Applied Energy, Elsevier, vol. 353(PA).
- Anupam Dutta & Kakali Kanjilal & Sajal Ghosh & Donghyun Park & Gazi Salah Uddin, 2023. "Impact of crude oil volatility jumps on sustainable investments: Evidence from India," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1450-1468, October.
- Neifar, Malika & Hdider, Anis, 2024. "Role of Crude Oil, Natural Gas and Wheat Prices and the Impact of the Russian-Ukrainian War on the Investor Social Network Sentiment; Evidence from the US Stock Market," MPRA Paper 120920, University Library of Munich, Germany.
- Zhang, Li & Liang, Chao & Huynh, Luu Duc Toan & Wang, Lu & Damette, Olivier, 2024. "Measuring the impact of climate risk on renewable energy stock volatility: A case study of G20 economies," Journal of Economic Behavior & Organization, Elsevier, vol. 223(C), pages 168-184.
- Vasiliki Vrana & Dimitrios Kydros & Iordanis Kotzaivazoglou & Ioanna Pechlivanaki, 2023. "EU Citizens’ Twitter Discussions of the 2022–23 Energy Crisis: A Content and Sentiment Analysis on the Verge of a Daunting Winter," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
- Xu, Zhiwei & Li, Jiaqi & Hua, Xia & Ren, Pengyue, 2024. "Is the tone of the government-controlled media valuable for capital market? Evidence from China's new energy industry," Energy Policy, Elsevier, vol. 184(C).
- Loutfi, Ahmad Amine, 2024. "Renewable energy stock prices forecast using environmental television newscasts investors’ sentiment," Renewable Energy, Elsevier, vol. 230(C).
- Cioroianu, Iulia & Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Larkin, Charles & Taffler, Richard, 2024. "Exploring the use of emotional sentiment to understanding market response to unexpected corporate pivots," Research in International Business and Finance, Elsevier, vol. 70(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiaohong Shen & Gaoshan Wang & Yue Wang & Alfred Peris, 2021. "The Influence of Research Reports on Stock Returns: The Mediating Effect of Machine-Learning-Based Investor Sentiment," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-14, December.
- Loutfi, Ahmad Amine, 2024. "Renewable energy stock prices forecast using environmental television newscasts investors’ sentiment," Renewable Energy, Elsevier, vol. 230(C).
- Shen, Yiran & Liu, Chang & Sun, Xiaolei & Guo, Kun, 2023. "Investor sentiment and the Chinese new energy stock market: A risk–return perspective," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 395-408.
- Liu, Yuanyuan & Niu, Zibo & Suleman, Muhammad Tahir & Yin, Libo & Zhang, Hongwei, 2022. "Forecasting the volatility of crude oil futures: The role of oil investor attention and its regime switching characteristics under a high-frequency framework," Energy, Elsevier, vol. 238(PA).
- Chu, Xiaojun & Wan, Xinmin & Qiu, Jianying, 2023. "The relative importance of overnight sentiment versus trading-hour sentiment in volatility forecasting," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
- Xiao, Jihong & Wen, Fenghua & He, Zhifang, 2023. "Impact of geopolitical risks on investor attention and speculation in the oil market: Evidence from nonlinear and time-varying analysis," Energy, Elsevier, vol. 267(C).
- Xiao, Jihong & Wang, Yudong, 2021. "Investor attention and oil market volatility: Does economic policy uncertainty matter?," Energy Economics, Elsevier, vol. 97(C).
- Chen, Qitong & Zhu, Huiming & Yu, Dongwei & Hau, Liya, 2022. "How does investor attention matter for crude oil prices and returns? Evidence from time-frequency quantile causality analysis," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
- Seok, Sang Ik & Cho, Hoon & Ryu, Doojin, 2021. "Stock Market’s responses to intraday investor sentiment," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
- Tan, Xueping & Geng, Yong & Vivian, Andrew & Wang, Xinyu, 2021. "Measuring risk spillovers between oil and clean energy stocks: Evidence from a systematic framework," Resources Policy, Elsevier, vol. 74(C).
- Zachary McGurk & Adam Nowak & Joshua C. Hall, 2020.
"Stock returns and investor sentiment: textual analysis and social media,"
Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 44(3), pages 458-485, July.
- Zachary McGurk & Adam Nowak & Joshua C. Hall, 2019. "Stock Returns and Investor Sentiment: Textual Analysis and Social Media," Working Papers 19-03, Department of Economics, West Virginia University.
- Zeitun, Rami & Rehman, Mobeen Ur & Ahmad, Nasir & Vo, Xuan Vinh, 2023. "The impact of Twitter-based sentiment on US sectoral returns," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
- Jawadi, Fredj & Bourghelle, David & Rozin, Philippe & Cheffou, Abdoulkarim Idi & Uddin, Gazi Salah, 2024. "Sentiment and energy price volatility: A nonlinear high frequency analysis," Energy Economics, Elsevier, vol. 133(C).
- Haukvik, Nicole & Cheraghali, Hamid & Molnár, Peter, 2024. "The role of investors’ fear in crude oil volatility forecasting," Research in International Business and Finance, Elsevier, vol. 70(PB).
- Zhang, Yue-Jun & Li, Zhao-Chen, 2021. "Forecasting the stock returns of Chinese oil companies: Can investor attention help?," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 531-555.
- Suwan (Cheng) Long & Brian Lucey & Ying Xie & Larisa Yarovaya, 2023. "“I just like the stock”: The role of Reddit sentiment in the GameStop share rally," The Financial Review, Eastern Finance Association, vol. 58(1), pages 19-37, February.
- Kuang, Wei, 2021. "Which clean energy sectors are attractive? A portfolio diversification perspective," Energy Economics, Elsevier, vol. 104(C).
- Lyócsa, Štefan & Todorova, Neda, 2024. "Forecasting of clean energy market volatility: The role of oil and the technology sector," Energy Economics, Elsevier, vol. 132(C).
- Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
- Bouteska, Ahmed & Ha, Le Thanh & Bhuiyan, Faruk & Sharif, Taimur & Abedin, Mohammad Zoynul, 2024. "Contagion between investor sentiment and green bonds in China during the global uncertainties," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 469-484.
More about this item
Keywords
Twitter; LSTM; Stock volatility; Stock return; Clean energy;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
- G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:114:y:2022:i:c:s0140988322004170. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.