IDEAS home Printed from https://ideas.repec.org/p/usg/econwp/201210.html
   My bibliography  Save this paper

Empirical pricing kernel estimation using a functional gradient descent algorithm based on splines

Author

Listed:
  • Audrino, Francesco
  • Meier, Pirmin

Abstract

We propose a new methodology to estimate the empirical pricing kernel implied from option data. In contrast to most of the studies in the literature that use an indirect approach, i.e. first estimating the physical and risk-neutral densities and obtaining the pricing kernel in a second step, we follow a direct approach. Departing from an adequate parametric and economically motivated pricing kernel, we apply a functional gradient descent (FGD) algorithm based on B-splines. This approach allows us to locally modify the initial pricing kernel and hence to improve the final estimate. We empirically illustrate the estimation properties of the method and test its predictive power on S&P 500 option data, comparing it as well with other recent approaches introduced in the empirical pricing kernel literature.

Suggested Citation

  • Audrino, Francesco & Meier, Pirmin, 2012. "Empirical pricing kernel estimation using a functional gradient descent algorithm based on splines," Economics Working Paper Series 1210, University of St. Gallen, School of Economics and Political Science.
  • Handle: RePEc:usg:econwp:2012:10
    as

    Download full text from publisher

    File URL: http://ux-tauri.unisg.ch/RePEc/usg/econwp/EWP-1210.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    2. Golubev, Yuri & Härdle, Wolfgang Karl & Timofeev, Roman, 2008. "Testing monotonicity of pricing Kernels," SFB 649 Discussion Papers 2008-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    4. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    5. Francesco Audrino & Peter Bühlmann, 2009. "Splines for financial volatility," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 655-670, June.
    6. De Giorgi, Enrico & Post, Thierry, 2008. "Second-Order Stochastic Dominance, Reward-Risk Portfolio Selection, and the CAPM," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(2), pages 525-546, June.
    7. Wolfgang Karl Härdle & Yarema Okhrin & Weining Wang, 2015. "Uniform Confidence Bands for Pricing Kernels," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 376-413.
    8. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    9. Grith, Maria & Härdle, Wolfgang Karl & Schienle, Melanie, 2010. "Nonparametric estimation of risk-neutral densities," SFB 649 Discussion Papers 2010-021, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Grith, Maria & Härdle, Wolfgang Karl & Park, Juhyun, 2009. "Shape invariant modelling pricing kernels and risk aversion," SFB 649 Discussion Papers 2009-041, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Brendan K. Beare & Lawrence D. W. Schmidt, 2016. "An Empirical Test of Pricing Kernel Monotonicity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 338-356, March.
    12. Hansen, Lars Peter & Richard, Scott F, 1987. "The Role of Conditioning Information in Deducing Testable," Econometrica, Econometric Society, vol. 55(3), pages 587-613, May.
    13. De Giorgi, Enrico, 2005. "Reward-risk portfolio selection and stochastic dominance," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 895-926, April.
    14. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    15. Xiaoquan Liu & Mark Shackleton & Stephen Taylor & Xinzhong Xu, 2009. "Empirical pricing kernels obtained from the UK index options market," Applied Economics Letters, Taylor & Francis Journals, vol. 16(10), pages 989-993.
    16. Jackwerth, Jens Carsten, 2000. "Recovering Risk Aversion from Option Prices and Realized Returns," The Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 433-451.
    17. Bakshi, Gurdip & Madan, Dilip & Panayotov, George, 2010. "Returns of claims on the upside and the viability of U-shaped pricing kernels," Journal of Financial Economics, Elsevier, vol. 97(1), pages 130-154, July.
    18. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    19. Enzo Giacomini & Wolfgang Härdle & Volker Krätschmer, 2009. "Dynamic semiparametric factor models in risk neutral density estimation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(4), pages 387-402, December.
    20. Giovanni Barone Adesi & Robert F. Engle & Loriano Mancini, 2014. "A GARCH Option Pricing Model with Filtered Historical Simulation," Palgrave Macmillan Books, in: Giovanni Barone Adesi (ed.), Simulating Security Returns: A Filtered Historical Simulation Approach, chapter 4, pages 66-108, Palgrave Macmillan.
    21. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-1445, November.
    22. Maria Grith & Wolfgang Härdle & Juhyun Park, 2013. "Shape Invariant Modeling of Pricing Kernels and Risk Aversion," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 370-399, March.
    23. repec:bla:jfinan:v:53:y:1998:i:2:p:499-547 is not listed on IDEAS
    24. Jun Yang, 2009. "Semiparametric estimation of asset pricing kernel," Applied Financial Economics, Taylor & Francis Journals, vol. 19(4), pages 257-272.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao, Yuhan & Liu, Qiang & Guo, Shuxin, 2021. "Pricing kernel monotonicity and term structure: Evidence from China," Journal of Banking & Finance, Elsevier, vol. 123(C).
    2. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    2. repec:hum:wpaper:sfb649dp2013-023 is not listed on IDEAS
    3. Grith, Maria & Karl Härdle, Wolfgang & Krätschmer, Volker, 2013. "Reference dependent preferences and the EPK puzzle," SFB 649 Discussion Papers 2013-023, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Peter Reinhard Hansen & Chen Tong, 2022. "Option Pricing with Time-Varying Volatility Risk Aversion," Papers 2204.06943, arXiv.org, revised Aug 2024.
    5. Dietmar P. J. Leisen, 2017. "The shape of small sample biases in pricing kernel estimations," Quantitative Finance, Taylor & Francis Journals, vol. 17(6), pages 943-958, June.
    6. Liao, Wen Ju & Sung, Hao-Chang, 2020. "Implied risk aversion and pricing kernel in the FTSE 100 index," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    7. Beare, Brendan K., 2011. "Measure preserving derivatives and the pricing kernel puzzle," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 689-697.
    8. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    9. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle in forward looking data," Review of Derivatives Research, Springer, vol. 21(3), pages 253-276, October.
    10. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    11. Chalamandaris, Georgios & Rompolis, Leonidas S., 2012. "Exploring the role of the realized return distribution in the formation of the implied volatility smile," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1028-1044.
    12. Polkovnichenko, Valery & Zhao, Feng, 2013. "Probability weighting functions implied in options prices," Journal of Financial Economics, Elsevier, vol. 107(3), pages 580-609.
    13. Brendan K. Beare & Lawrence D. W. Schmidt, 2016. "An Empirical Test of Pricing Kernel Monotonicity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 338-356, March.
    14. Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2012. "Option pricing with discrete time jump processes," Post-Print halshs-00611706, HAL.
    15. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    16. repec:hum:wpaper:sfb649dp2010-021 is not listed on IDEAS
    17. George M. Constantinides & Michal Czerwonko & Stylianos Perrakis, 2020. "Mispriced index option portfolios," Financial Management, Financial Management Association International, vol. 49(2), pages 297-330, June.
    18. René Garcia & Richard Luger & Eric Renault, 2001. "Empirical Assessment of an Intertemporal Option Pricing Model with Latent Variables (Note : Nouvelle version Février 2002)," CIRANO Working Papers 2001s-02, CIRANO.
    19. Jiao, Yuhan & Liu, Qiang & Guo, Shuxin, 2021. "Pricing kernel monotonicity and term structure: Evidence from China," Journal of Banking & Finance, Elsevier, vol. 123(C).
    20. Garcia, Rene & Luger, Richard & Renault, Eric, 2003. "Empirical assessment of an intertemporal option pricing model with latent variables," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 49-83.
    21. Fengler, Matthias & Hin, Lin-Yee, 2011. "Semi-nonparametric estimation of the call price surface under strike and time-to-expiry no-arbitrage constraints," Economics Working Paper Series 1136, University of St. Gallen, School of Economics and Political Science, revised May 2013.
    22. Bakshi, Gurdip & Madan, Dilip & Panayotov, George, 2010. "Returns of claims on the upside and the viability of U-shaped pricing kernels," Journal of Financial Economics, Elsevier, vol. 97(1), pages 130-154, July.

    More about this item

    Keywords

    Empirical pricing kernel; function gradient descent; B-splines; option pricing;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usg:econwp:2012:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/vwasgch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.